One of the main factors limiting the lining lifetime in pyrometallurgical smelters is continuous refractory oxides dissolution in the slag bath. The overall wear is accelerated when the slag infiltrates the porous brick and the dissolution thus occurs in a larger part of the lining. This work investigates the possibility of preventing deep infiltration by sealing off the pores with newly formed phases. Static finger tests at constant temperature (1200 °C) were performed in contact with a synthetic nonferrous PbO-SiO2-MgO slag showing the formation of forsterite (Mg2SiO4) throughout the refractory sample by the reaction between SiO2 (slag) and MgO (refractory). This phase grows with time, eventually sealing off the pores near the interface with the bath. The phase grows too slow to prevent full infiltration of the refractory but creates an equilibrium state in the sealed off part of the sample ceasing the chemical corrosion in that part of the sample.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.