Heating and ventilation air conditioning systems in hospitals (cleanroom HVAC systems) are used to control the transmission/spreading of airborne diseases such as COVID-19. Air exiting from these systems may contribute to the spreading of coronavirus droplets outside of hospitals. Some research studies indicate that the shortest time of survival of SARS-CoV-2 in aerosol form (as droplets in the air) is four hours and the virus becomes inactive above 60 °C air temperature. Therefore, SARS-CoV-2 droplets cannot exit from the exhaust duct if the temperature is above 60 °C. At the condenser, heat is dissipated in the form of hot air which could be utilized to warm the exhaust air. The objective of this paper is to establish a novel technique for eliminating SARS-CoV-2 from cleanroom HVAC systems using the recovered heat of exhaust air. This can eliminate SARS-CoV-2 and reduce the greenhouse effect.
Jet fans are increasingly preferred over traditional ducted systems as a means of ventilating pollutants in large environments such as underground car parks. The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)—which causes the novel coronavirus disease—through the jet fans in underground car parks has been considered a matter of key concern. A quantitative understanding of the propagation of respiratory droplets/particles/aerosols containing the virus is important. However, to date, studies have yet to demonstrate viral (e.g., SARS-CoV-2) transmission in underground car parks equipped with jet fans. In this paper, numerical simulation has been performed to assess the effects of jet fans on the spreading of viruses inside underground car parks.
Jet fans are increasingly preferred over traditional ducted systems as a means of ventilating pollutants from large spaces such as underground car parks. The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) -which causes novel coronavirus disease (COVID-19)- through the jet fans in the underground car parks has been considered a matter of key concern. A quantitative understanding of the propagation of respiratory droplets/particles/aerosols containing the virus is important. However, to date, studies are yet to demonstrate the viral (e.g. SARS-CoV-2) transmission in the underground car parks equipped with jet fans. In this paper, the numerical simulation has been performed to assess the effects of jet fans on the spreading of viruses inside the underground car parks.
Transmission via virus-carrying aerosols inside enclosed spaces is an important transmission mode for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as supported by growing evidence. The urban subway is one of the most commonly used enclosed spaces. The subway is a utilitarian and low-cost transit system in today’s society. However, studies are yet to demonstrate patterns of viral transmission in subway heating, ventilation, and air conditioning (HVAC) systems. To fill this gap, we performed a computational investigation of the airflow (and the associated aerosol transmission) in an urban subway cabin equipped with an HVAC system. We employed a transport equation for aerosol concentration, which was added to the basic buoyant solver to resolve aerosol transmission inside the subway cabin. This was achieved by considering the thermal, turbulence, and induced ventilation flow effects. Using the aerosol encounter probability over sampling lines crossing the passenger breathing zones, we can detect the highest infection risk zones inside the urban subway under different settings. We proposed a novel HVAC system that can impede aerosol spread, both vertically and horizontally, inside the cabin. In the conventional model, the maximum aerosol encounter probability from an infected individual breathing near the fresh-air ducts was equal to 15%. This decreased to 0.36% in the proposed HVAC model. Overall, using the proposed HVAC system for urban subways decreased the mean value of the aerosol encounter probability by approximately 79% compared to that for the conventional system.
The new coronavirus (SARS-CoV-2) is rapidly spreading across communities around the world.Respiratory droplet transmission is a common transmission route for many airborne diseases, including novel coronavirus disease . Wearing the face mask prevents respiratory droplet transmission. Both face mask leakage and non-use of the face mask under high-speed wind conditions can increase the risk of SARS-CoV-2 transmission. The respiratory droplets' behavior during sneezing or coughing (i.e., the size and the distance between droplets) depends on face mask wearing. The respiratory droplets during coughing and sneezing break apart into extremely small respiratory droplets (i.e. cloud of aerosol) upon interaction with the high-speed wind condition. The volume-of-fluid (VOF) method has been used to study the deformation and breakup of a single respiratory droplet placed in high-speed wind flow in the presence of smaller
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.