The present review aims to high light on the oxidative stress, and prevention by internal antioxidants and external antioxidants by some natural products possessing antioxidant properties. Oxidative stress occurs when the balance between reactive oxygen species (ROS) formation and detoxification favors an increase in ROS levels, leading to disturbed cellular function. ROS causes damage to cellular macromolecules causing lipid peroxidation, nucleic acid, and protein alterations. Their formation is considered as a pathobiochemical mechanism involved in the initiation or progression phase of various diseases such as atherosclerosis, ischemic heart diseases, diabetes, and initiation of carcinogenesis or liver diseases. In order to maintain proper cell signaling, it is likely that a number of radical scavenging enzymes maintain a threshold level of ROS inside the cell. However, when the level of ROS exceeds this threshold, an increase in ROS production may lead to excessive signals to the cell, in addition to direct damage to key components in signaling pathways. ROS can also irreversibly damage essential macromolecules. Protein-bound thiol and non-protein-thiol are the major cytosolic low molecular weight sulfhydryl compound that acts as a cellular reducing and a protective reagent against numerous toxic substances including most inorganic pollutants, through the –SH group. Hence, thiol is often the first line of defense against oxidative stress. Flavonoids have been found to play important roles in the non-enzymatic protection against oxidative stress, especially in the case of cancer. Flavonoids have occurred widely in tea, fruit, red wine, vegetables, and cocoas. Flavonoids, including flavones, flavanone, flavonols, and isoflavones, are polyphenolic compounds which are widespread in foods and beverages, and possess a wide range of biological activities, of which anti-oxidation has been extensively explored. It can be concluded that oxidative stress causes irreversible damage in cellular macromolecules that leads to initiation of various diseases such as atherosclerosis, ischemic heart diseases, liver diseases, diabetes, and initiation of carcinogenesis. Antioxidants inhibit reactive oxygen species production and scavenging of free radicals. Therefore, the review recommends that high consumption of natural foods that are rich in antioxidants will provide more protection against toxic agents and related diseases.
Nephrotoxicity is one of the most common kidney problems and occurs when the body is exposed to a drug or toxin. Natural sources of antioxidants may serve as a vital source of potentially useful new compounds for the development of an effective therapy to combat a variety of kidney problems. Natural antioxidants have a variety of biochemical actions such as inhibition of reactive oxygen species production, scavenging of free radicals. The present review aims to summarize the recent articles which studied some of the nephrotoxic agents, and alleviation of nephrotoxicity using of some natural products possessing antioxidant properties. Our review shows the oxidative damage and renal disorders induced in human and experimental animals by nephrotoxic agents such as gentamicin, alcohol, nicotine, adenine, glycerol, ethylene glycol, sodium nitrite, mercuric chloride, AlCl 3 , lead acetate, carbon tetrachloride (CCl 4 ), furosemide, carbendazim, diazinon, heat stress, and γ-radiation. Also, nephrotic disorders caused in diabetic rats, patients, cirrhotic ascetic patients, and ischemia-reperfusion. Administration of natural sources of antioxidants such as curcumin, garlic, fenugreek, parsley, peppermint, pomegranate, propolis, olive leaves, rosemary, and sesame attenuated both physiological and histopathological alterations induced in the kidney by the nephrotoxic agent and certain diseases. The nephroprotective effect of the former natural sources of antioxidants may be due to the enhancement of antioxidant activity and inhibition of tissue lipid peroxidation. It can be concluded that administration of curcumin, garlic, fenugreek, parsley, peppermint, pomegranate, propolis, olive leaves, rosemary, and sesame showed a remarkable kidney protection against nephrotoxic agents, and diseases induced renal dysfunctions in human and experimental animals. So, the present study recommended that the consumption of these natural sources of antioxidants may be useful for human exposure to nephrotoxic agents and patients who suffer from renal diseases.
Cyclosporin A is a compound widely used as an immunosuppressive drug, particularly, in case of kidney transplantation to prevent rejection of transplanted organ. This study aimed to investigate the bad side effect of acute and chronic treatment with cyclosporin A on liver and kidneys by measuring liver enzymes and kidney function tests in serum. Male rats were used as experimental model in this study. The results of this study concluded that, chronic treatment with cycloosprin A leads to increase in serum urea, creatinine, and uric acid significantly compared to control, also, ALT and Alkaline phosphatase activities in serum were increased by chronic administration of cyclosporine A for four weeks. Decrease of serum albumin and total protein were observed significantly compared to control groups.
SUMMARY Polyphenolic compounds were extracted with ethyl acetate from aqueous infusions of canned Blenheim apricots (Prunus armenica L.). The compounds were separated by two‐dimensional paper chromatography of the extract with n‐butanol‐acetic acid‐water (4:1:5) and 2% acetic acid. The individual compounds were identified by Rf values, fluorescent behavior, absorption spectra, and degradation products. Shown to be present in the extract were three chlorogenic acid isomers, two p‐coumaric acid derivatives, rutin, isoquercitrin, quercetin, an unidentified quercetin glucoside, catechin, and epicatechin. The predominant polyphenolic compounds were chlorogenic acids and p‐coumaric acid derivatives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.