This paper considers the problem of multiple human target tracking in a sequence of video data. A solution is proposed which is able to deal with the challenges of a varying number of targets, interactions, and when every target gives rise to multiple measurements. The developed novel algorithm comprises variational Bayesian clustering combined with a social force model, integrated within a particle filter with an enhanced prediction step. It performs measurement-to-target association by automatically detecting the measurement relevance. The performance of the developed algorithm is evaluated over several sequences from publicly available data sets: AV16.3, CAVIAR, and PETS2006, which demonstrates that the proposed algorithm successfully initializes and tracks a variable number of targets in the presence of complex occlusions. A comparison with state-of-the-art techniques due to Khan et al., Laet et al., and Czyz et al. shows improved tracking performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.