Simulation of groundwater flow by mathematical model can be used for developing aquifer balance element analysis scenarios, explaining conditions of droughts, definition of prohibitive extraction policies and analyzing the qualitative models. In this study, the development of a quantitative model in terms of the main parameters affecting on the water surface changes has been performed for the Ardebil plain (located in NW of Iran). Accordingly, a comprehensive processing of raw data sets has been carried-out by means of MODFLOW mathematical model. Also to simulate the groundwater surface changes in the mentioned plain, the geo-statistical method has been used. Results indicate that the mathematical model used in the aquifer balance simulation for the Ardebil plain has approximately 2% relative normal root-mean-square error (NRMSE). This small NRSMSE confirms the model accuracy for the Ardebil plain using the calibration data. Moreover, comparing the results of this method and the ones obtained by mathematical model performed by examining some error criteria like RMSE, Mean, ASE and MS, it is found that the accuracy of the mathematical model is higher than the geostatistical method and the main reason for this is the distribution of uncertainty in a few available piezometric points in the geostatistical method.
This paper presented the results of an experimental investigation into the resistance performance of a wave-piercing trimaran with three alternative side hull forms, including asymmetric inboard, asymmetric outboard, and symmetric at various stagger/ separation positions. Model tests were carried out at the National Iranian Marine Laboratory (NIMALA) towing tank using a scale model of a trimaran at the Froude numbers from 0.225 to 0.60. Results showed that by moving the side hulls to the forward of the main hull transom, the total resistance coefficient of trimaran decreased. Findings, furthermore, demonstrated that the symmetry shape of the side hull had the best performance on total resistance among three side hull forms. Results of this study are useful for selecting the side hull configuration from the resistance viewpoint.
Introduction:
Studying dam break and the resultant flood routing along with identifying critical areas at the dam downstream are of great importance in safety management of the dam break issues. To reduce the risk of the dam break, an accurate estimation of the effective parameters on the energy dissipation due to the collapse of dams and the flood routing around the downstream natural and artificial obstacles is necessary.
Methods:
In this research, effects of downstream obstacles (e.g. bridge piers) caused by dam break were investigated on different flood patterns in the flow characteristics. Accordingly, two different geometries of the long and wide reservoirs were considered in the experimental tests and 3D numerical simulations.
Results and Conclusion:
The results indicated the formation of different flow patterns at downstream of the long and wide reservoirs depends on the reservoir geometry. Due to the alignment of the channel and the reservoir in the long reservoir case, the dominant flow was one-dimensional up to the collision with the pier. Therefore, the one-dimensional solutions, including Ritter analytical solution could be applied in this range. After the flow passes through the pier, due to the formation of the wake vortices, the one-dimensional state was no longer valid. This caused turbulence at the surface of the water, which continued to the end of the channel. In the wide reservoir, from the beginning of the flow entry into the channel until its moment of collision with the pier, as well as passing through it, the flow lost its one-dimensional state. In such a case, the use of 3D models was necessary to achieve the appropriate accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.