Summary iBioProVis is an interactive tool for visual analysis of the compound bioactivity space in the context of target proteins, drugs and drug candidate compounds. iBioProVis tool takes target protein identifiers and, optionally, compound SMILES as input, and uses the state-of-the-art non-linear dimensionality reduction method t-Distributed Stochastic Neighbor Embedding (t-SNE) to plot the distribution of compounds embedded in a 2D map, based on the similarity of structural properties of compounds and in the context of compounds’ cognate targets. Similar compounds, which are embedded to proximate points on the 2D map, may bind the same or similar target proteins. Thus, iBioProVis can be used to easily observe the structural distribution of one or two target proteins’ known ligands on the 2D compound space, and to infer new binders to the same protein, or to infer new potential target(s) for a compound of interest, based on this distribution. Principal component analysis (PCA) projection of the input compounds is also provided, Hence the user can interactively observe the same compound or a group of selected compounds which is projected by both PCA and embedded by t-SNE. iBioProVis also provides detailed information about drugs and drug candidate compounds through cross-references to widely used and well-known databases, in the form of linked table views. Two use-case studies were demonstrated, one being on angiotensin-converting enzyme 2 (ACE2) protein which is Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Spike protein receptor. ACE2 binding compounds and seven antiviral drugs were closely embedded in which two of them have been under clinical trial for Coronavirus disease 19 (COVID-19). Availability and implementation iBioProVis and its carefully filtered dataset are available at https://ibpv.kansil.org/ for public use. Supplementary information Supplementary data are available at Bioinformatics online.
Purpose Computational approaches have been used at different stages of drug development with the purpose of decreasing the time and cost of conventional experimental procedures. Lately, techniques mainly developed and applied in the field of artificial intelligence (AI), have been transferred to different application domains such as biomedicine. Methods In this study, we conducted an investigative analysis via data-driven evaluation of potential hepatocellular carcinoma (HCC) therapeutics in the context of AI-assisted drug discovery/repurposing. First, we discussed basic concepts, computational approaches, databases, modeling approaches, and featurization techniques in drug discovery/repurposing. In the analysis part, we automatically integrated HCC-related biological entities such as genes/proteins, pathways, phenotypes, drugs/compounds, and other diseases with similar implications, and represented these heterogeneous relationships via a knowledge graph using the CROssBAR system. Results Following the system-level evaluation and selection of critical genes/proteins and pathways to target, our deep learning-based drug/compound-target protein interaction predictors DEEPScreen and MDeePred have been employed for predicting new bioactive drugs and compounds for these critical targets. Finally, we embedded ligands of selected HCCassociated proteins which had a significant enrichment with the CROssBAR system into a 2-D space to identify and repurpose small molecule inhibitors as potential drug candidates based on their molecular similarities to known HCC drugs. Conclusions We expect that these series of data-driven analyses can be used as a roadmap to propose early-stage potential inhibitors (from database-scale sets of compounds) to both HCC and other complex diseases, which may subsequently be analyzed with more targeted in silico and experimental approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.