Abstract-This paper introduces a new approach for estimating the uncertainty in the forecast through the construction of Triangular Fuzzy Numbers (TFNs). The interval of the proposed TFN presentation is generated from a Fuzzy logic based Lower and Upper Bound Estimator (FLUBE). Here, instead of the representing the forecast with a crisp value with a Prediction Interval (PI), the level of uncertainty associated with the point forecasts will be quantified by defining TFNs (linguistic terms) within the uncertainty interval provided by the FLUBE. This will give the opportunity to handle the forecast as linguistic terms which will increase the interpretability. Moreover, the proposed approach will provide valuable information about the accuracy of the forecast by providing a relative membership degree. The demonstrated results indicate that the proposed FLUBE based TFN representation is an efficient and useful approach to represent the uncertainty and the quality of the forecast.
In this study, we will present the novel application of Type-2 (T2) fuzzy control into the popular video game called flappy bird. To the best of our knowledge, our work is the first deployment of the T2 fuzzy control into the computer games research area. We will propose a novel T2 fuzzified flappy bird control system that transforms the obstacle avoidance problem of the game logic into the reference tracking control problem. The presented T2 fuzzy control structure is composed of two important blocks which are the reference generator and Single Input Interval T2 Fuzzy Logic Controller (SIT2-FLC). The reference generator is the mechanism which uses the bird's position and the pipes' positions to generate an appropriate reference signal to be tracked. Thus, a conventional fuzzy feedback control system can be defined. The generated reference signal is tracked via the presented SIT2-FLC that can be easily tuned while also provides a certain degree of robustness to system. We will investigate the performance of the proposed T2 fuzzified flappy bird control system by providing comparative simulation results and also experimental results performed in the game environment. It will be shown that the proposed T2 fuzzified flappy bird control system results with a satisfactory performance both in the framework of fuzzy control and computer games. We believe that this first attempt of the employment of T2-FLCs in games will be an important step for a wider deployment of T2-FLCs in the research area of computer games
This paper represents the practical use of Fuzzy Cognitive Maps (FCMs) in order to model the control engineering educational critical success factors. FCMs are fuzzy signed digraphs with feedbacks, and they can model the events, values, goals as a collection of concepts by forging a causal link between these concepts. In this study, the concepts of the FCM model is developed by the help of the academics, then the suggested FCMs of each academic is aggregated to build the final FCM to model the control engineering educational critical success factors. Afterwards the model is coded in Matlab to study four scenarios via different simulations. The results of the simulations show the effectiveness of FCMs to understand the success factors of educational organizations and programs.
Abstract-In this study, we will present the novel application of Type-2 (T2) fuzzy logic to the popular video game called Lunar Lander. The proposed T2 fuzzy moon landing system structure is composed of the error signal generator and the T2 fuzzy logic control structure which give the opportunity to transform the moon landing problem of the spaceship as a multivariable tracking control problem. The landing problem of the game can be seen as one of the classical multivariable control problems including uncertainties due to the randomization process occurring the game environment. Thus, we will employ T2 fuzzy logic controllers since they are capable of handling a high level of uncertainties. Then, by optimizing the T2 fuzzy moon landing system via the particle swarm optimization, we will show that the resulting T2 fuzzy moon landing system resulted with an adequate control and game performance in the presence of the uncertainties, disturbances and nonlinear system dynamics in comparison with its type-1 and conventional counterparts. We believe that the results of this paper will be an important step for a wider deployment of T2 fuzzy logic in the research area of computer games.
In this chapter, we will present the novel applications of the Interval Type-2 (IT2) Fuzzy Logic Controllers (FLCs) into the research area of computer games. In this context, we will handle two popular computer games called Flappy Bird and Lunar Lander. From a control engineering point of view, the game Flappy Bird can be seen as a classical obstacle avoidance while Lunar Lander as a position control problem. Both games inherent high level of uncertainties and randomness which are the main challenges of the game for a player. Thus, these two games can be seen as challenging testbeds for benchmarking IT2-FLCs as they provide dynamic and competitive elements that are similar to realworld control engineering problems. As the game player can be considered as the main controller in a feedback loop, we will construct an intelligent control systems composed of three main subsystems: reference generator, the main controller, and game dynamics. In this chapter, we will design and then employ an IT2-FLC as the main controller in a feedback loop such that to have a satisfactory game performance while be able to handle the various uncertainties of the games. In this context, we will briefly present the general structure and the design methods of two IT2-FLCs which are the Single Input and the Double Input IT2-FLCs. We will show that an IT2 fuzzy control structure is capable to handle the uncertainties caused by the nature of the games by presenting both simulations and real-time game results in comparison with its Type-1 and conventional counterparts. We believe that the presented design methodology and results will provide a bridge for a wider deployment of Type-2 fuzzy logic in the area of the computer games.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.