We study a differential game of optimal approach of finite or countable number of pursuers with one evader in the Hilbert space l2. On control functions of the players integral constraints are imposed. Such constraints arise in modeling the constraint on energy. The duration of the game θ is fixed. The payoff functional is the greatest lower bound of distances between the pursuers and evader when the game is terminated. The pursuers try to minimize the payoff functional, and the evader tries to maximize it. In this paper, we find formula for the value of the game and construct explicitly optimal strategies of the players. Important point to note is that the energy resource of any pursuer needs not be greater than that of the evader.
We study a pursuit differential game problem for an infinite system of second-order differential equations. The control functions of players, i.e., a pursuer and an evader are subject to integral constraints. The pursuit is completed if z(τ) = z˙ (τ) = 0 at some τ > 0, where z(t) is the state of the system. The pursuer tries to complete the pursuit and the evader tries to avoid this. A sufficient condition is obtained for completing the pursuit in the differential game when the control recourse of the pursuer is greater than the control recourse of the evader. To construct the strategy of the pursuer, we assume that the instantaneous control used by the evader is known to the pursuer.
We consider pursuit and evasion differential games of a group of pursuers and one evader on manifolds with Euclidean metric. The motions of all players are simple, and maximal speeds of all players are equal. If the state of a pursuer coincides with that of the evader at some time, we say that pursuit is completed. We establish that each of the differential games (pursuit or evasion) is equivalent to a differential game of groups of countably many pursuers and one group of countably many evaders in Euclidean space. All the players in any of these groups are controlled by one controlled parameter. We find a condition under which pursuit can be completed, and if this condition is not satisfied, then evasion is possible. We construct strategies for the pursuers in pursuit game which ensure completion the game for a finite time and give a formula for this time. In the case of evasion game, we construct a strategy for the evader.
Hindawi Publishing Corporation
We study a linear discrete pursuit game problem of one pursuer and one evader. Control vectors of the players are subjected to total constraints which are discrete analogs of the integral constraints. By definition pursuit can be completed in the game if there exists a strategy of the pursuer such that for any control of the evader the state of system () reaches the origin at some time. We obtain sufficient conditions of completion of the game from any initial position of the state space. Strategy of the pursuer is defined as a function of the current state of system and value of control parameter of the evader.
We study a pursuit differential game with many Pursuers when the Evader moves on the surface of a given cylinder. Maximal speeds of all players are equal. We consider two cases: in the first case, the Pursuers move arbitrarily without phase constraints; and in the second case, the Pursuers move on the surface of the cylinder. In both cases, we give necessary and sufficient conditions to complete the pursuit. In addition, in the second case, we show that pursuit differential game on a cylinder are equivalent to a differential game on the plane with many groups of Pursuers where each group consists of infinite number of pursuers having the same control parameter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.