Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field.
The protein Bid is a participant in the pathway that leads to cell death (apoptosis), mediating the release of cytochrome c from mitochondria in response to signals from 'death' receptors known as TNFR1/Fas on the cell surface. It is a member of the proapoptotic Bcd-2 family and is activated as a result of its cleavage by caspase 8, one of a family of proteolytic cell-death proteins. To investigate the role of Bid in vivo, we have generated mice deficient for Bid. We find that when these mice are injected with an antibody directed against Fas, they nearly all survive, whereas wild-type mice die from hepatocellular apoptosis and haemorrhagic necrosis. About half of the Bid-deficient animals had no apparent liver injury and showed no evidence of activation of the effector caspases 3 and 7, although the initiator caspase 8 had been activated. Other Bid-deficient mice survived with only moderate damage: all three caspases (8 and 37) were activated but their cell nuclei were intact and no mitochondrial cytochrome c was released. We also investigated the effects of Bid deficiency in cultured cells treated with anti-Fas antibody (hepatocytes and thymocytes) or with TNFalpha. (fibroblasts). In these Bid-/- cells, mitochondrial dysfunction was delayed, cytochrome c was not released, effector caspase activity was reduced and the cleavage of apoptosis substrates was altered. This loss-of-function model indicates that Bid is a critical substrate in vivo for signalling by death-receptor agonists, which mediates a mitochondrial amplification loop that is essential for the apoptosis of selected cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.