This paper deals with the rolling resistance of heavy vehicle tyres measured on a large drum under dynamically varying vertical load. The aim is to simulate in the laboratory the dynamic loading conditions arising from interaction of the vehicle with a randomly rough road. A dynamically varying vertical force is generated using a hydraulic actuator. A comprehensive set of experimental data for two different truck tyres is presented, and the influence of dynamic load on the mean rolling resistance is quantified and discussed. The measurements indicate that there is no significant effect of dynamic vertical load on the mean rolling resistance of the two tyres tested.
This paper proposes a versatile model for optimizing the performance of a rectangular cantilever beam piezoelectric energy harvester used to convert ambient vibrations into electrical energy. The developed model accounts for geometric changes to the natural frequencies, mode shapes and damping in the structure. This is achieved through the combination of finite element modelling and a distributed parameter electromechanical model, including load resistor and charging capacitor models. The model has the potential for use in investigating the influence of numerous geometric changes on harvester performance, and incorporates a model for accounting for changes in damping as the geometry changes. The model is used to investigate the effects of substrate and piezoelectric layer length, and piezoelectric layer thickness on the performance of a microscale device. Findings from a parameter study indicate the existence of an optimum sample length due to increased mechanical damping for longer beams and improved power output using thicker piezoelectric layers. In practice, harvester design is normally based around a fixed operating frequency for a particular application, and improved performance is often achieved by operating at or near resonance. To achieve unbiased comparisons between different harvester designs, parameter studies are performed by changing multiple parameters simultaneously with the natural frequency held fixed. Performance enhancements were observed using shorter piezoelectric layers as compared to the conventional design, in which the piezoelectric layer and substrate are of equal length.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.