Automatic modulation recognition plays an important role for many novel computer and communication technologies. Most of the proposed systems can only identify a few kinds of digital signal and/or low order of them. They usually require high levels of signal-to-noise ratio. In this paper, we present a novel hybrid intelligent system that automatically recognizes a variety of digital signals. In this recognizer, a multilayer perceptron neural network with resilient back propagation learning algorithm is proposed as the classifier. For the first time, a combination set of spectral features and higher order moments up to eighth and higher order cumulants up to eighth are proposed as the effective features. Then we have optimized the classifier design by bees algorithm (BA) for selection of the best features that are fed to the classifier. This optimization method is new for this area. Simulation results show that the proposed technique has very high recognition accuracy with seven features selected by BA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.