Intrinsic modification of polybutadiene and block copolymer styrene–butadiene–styrene with the electrically conducting emeraldine salt of tetraaniline (TANI) via a three-step grafting method, is reported in this work. Whilst the TANI oligomer grafted at a similar rate to both polybutadiene and styrene–butadiene–styrene under the same conditions, the resulting elastomers exhibited vastly different properties. 1 mol% TANI-PB exhibited an increased relative permittivity of 5.9, and a high strain at break of 156%, whilst 25 mol% TANI-SBS demonstrated a relative permittivity of 6.2 and a strain at break of 186%. The difference in the behaviour of the two polymers was due to the compatibilisation of TANI by styrene in SBS through π-π stacking, which prevented the formation of a conducting TANI network in SBS at. Without the styrene group, TANI-PB formed a phase separated structure with high levels of TANI grafting. Overall, it was concluded that the polymer chain structure, the morphology of the modified elastomers, and the degree of grafting of TANI, had the greatest effect on the mechanical and dielectric properties of the resultant elastomers. This work paves the way for an alternative approach to the extrinsic incorporation of conducting groups into unsaturated elastomers, and demonstrates dielectric elastomers with enhanced electrical properties for use in actuation devices and energy harvesting applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.