The use of Cre͞loxP recombination in mammalian cells has expanded rapidly. We describe here that Cre expression in cultured mammalian cells may result in a markedly reduced proliferation and that this effect is dependent on the endonuclease activity of Cre. Chromosome analysis after Cre expression revealed numerous chromosomal aberrations and an increased number of sister chromatid exchanges. Titration experiments in mouse embryo fibroblasts with a ligand-regulatable Cre-ER T show that toxicity is dependent on the level of Cre activity. Prolonged, low levels of Cre activity permit recombination without concomitant toxicity. This urges for a careful titration of Cre activity in conditional gene modification in mammalian cells.genotoxicity ͉ conditional knockout
CDKN2A (INK4a/ARF) is frequently disrupted in various types of human cancer, and germline mutations of this locus can confer susceptibility to melanoma and other tumours. However, because CDKN2A encodes two distinct cell cycle inhibitory proteins, p16INK4a and p14ARF (p19Arf in mice), the mechanism of tumour suppression by CDKN2A has remained controversial. Genetic disruption of Cdkn2a(p19Arf) (hereafter Arf) alone predisposes mice to tumorigenesis, demonstrating that Arf is a tumour-suppressor gene in mice. We mutated mice specifically in Cdkn2a(p16Ink4a) (hereafter Ink4a). Here we demonstrate that these mice, designated Ink4a*/*, do not show a significant predisposition to spontaneous tumour formation within 17 months. Embryo fibroblasts derived from them proliferate normally, are mortal, and are not transformed by oncogenic HRAS. The very mild phenotype of the Ink4a*/* mice implies that the very strong phenotypes of the original Ink4a/ArfDelta2,3 mice were primarily or solely due to loss of Arf. However, Ink4a*/Delta2,3 mice that are deficient for Ink4a and heterozygous for Arf spontaneously develop a wide spectrum of tumours, including melanoma. Treatment of these mice with the carcinogen 7,12-dimethylbenzanthracene (DMBA) results in an increased incidence of melanoma, with frequent metastases. Our results show that, in the mouse, Ink4a is a tumour-suppressor gene that, when lost, can recapitulate the tumour predisposition seen in humans.
Ligand-activated Cre recombinases are widely used for studying gene function in vitro and in conditional mouse models. To compare ligand-dependent Cre recombinases, different Cre estrogen receptor fusions were introduced into the ROSA26 locus of embryonic stem (ES) cells and assayed for genotoxicity and recombination efficiency. Of the tested recombinases, the CreERT2 variant showed no toxicity and was highly responsive to ligand induction. To constitutively express CreERT2 in mice and also to clarify whether the CreERT2 system displays background activity, we generated a knock-in mouse line harboring the CreERT2 coding region under the control of the ROSA26 locus. Analysis of this ROSA26-CreERT2 deleter mouse with different reporter strains revealed ubiquitous recombination in the embryo and partial recombination in peripheral and hematopoietic tissues but no effective CreERT2 expression in the brain. Furthermore, using flow cytometry, we found low-level background recombination in noninduced bitransgenic ROSA26-CreERT2/EGFP reporter mice. To determine whether background activity poses a general problem for conducting conditional in vivo experiments with the ROSA26-CreERT2 deleter, we used a sensitive conditional skin cancer model. In this assay, cancer induction was completely restricted to induced bitransgenic CreERT2/K-Ras(V12) mice, whereas noninduced control animals did not show any sign of cancer, indicating the usefulness of the ROSA-CreERT2 system for regulating conditional gene expression in vivo. The ROSA26-CreERT2 deleter strain will be a convenient experimental tool for studying gene function under circumstances requiring partial induction of recombination in peripheral tissues and will be useful for uncovering previously unknown or unsuspected phenotypes.
In contrast to other replication systems, adenovirus DNA replication does not require a DNA helicase to unwind the double‐stranded template. Elongation is dependent on the adenovirus DNA‐binding protein (DBP) which has helix‐destabilizing properties. DBP binds cooperatively to single‐stranded DNA (ssDNA) in a non‐sequence‐specific manner. The crystal structure of DBP shows that the protein has a C‐terminal extension that hooks on to an adjacent monomer which results in the formation of long protein chains. We show that deletion of this C‐terminal arm results in a monomeric protein. The mutant binds with a greatly reduced affinity to ssDNA. The deletion mutant still stimulates initiation of DNA replication like the intact DBP. This shows that a high affinity of DBP for ssDNA is not required for initiation. On a single‐stranded template, elongation is also observed in the absence of DBP. Addition of DBP or the deletion mutant has no effect on elongation, although both proteins stimulate initiation on this template. Strand displacement synthesis on a double‐stranded template is only observed in the presence of DBP. The mutant, however, does not support elongation on a double‐stranded template. The unwinding activity of the mutant is highly reduced compared with intact DBP. These data suggest that protein chain formation by DBP and high affinity binding to the displaced strand drive the ATP‐independent unwinding of the template during adenovirus DNA replication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.