Background Intestinal microbiota and their metabolites (e.g. short-chain fatty acids (SCFAs)) may influence nonalcoholic fatty liver disease (NAFLD). Objective The objective of this article is to analyze gut bacterial diversity together with fecal SCFA concentrations and immunophenotyping of peripheral blood in histology-proven NAFLD patients. Methods Thirty-two NAFLD patients (14 nonalcoholic fatty liver (NAFL), 18 nonalcoholic steatohepatitis (NASH)) and 27 healthy controls (HCs)) were included in this study. Bacterial communities in feces were profiled by 16S ribosomal RNA gene sequencing of the V3–V4 region. Fecal SCFA levels were analyzed by high-performance liquid chromatography. Fluorescence-activated cell sorting analysis was performed of peripheral blood mononuclear cells. Results NASH patients were characterized by higher abundance of Fusobacteria and Fusobacteriaceae compared to NAFL and HCs. Conforming to our finding that NAFLD patients had higher fecal acetate and propionate levels, taxonomical differences of fecal bacteria were dominated by SCFA-producing bacteria. Higher fecal propionate and acetate levels were associated with lower resting regulatory T-cells (rTregs) (CD4+CD45RA+CD25++) as well as higher Th17/rTreg ratio in peripheral blood as immunological characteristics of NASH patients. Conclusions NASH patients are characterized by a different gut microbiome composition with higher fecal SCFA levels and higher abundance of SCFA-producing bacteria in NAFLD. These changes are associated with immunological features of disease progression. Our data suggest an important role of the intestinal microbiome and immunomodulatory bacterial metabolites in human NAFLD.
Background The interplay between hosts and their associated microbiome is now recognized as a fundamental basis of the ecology, evolution, and development of both players. These interdependencies inspired a new view of multicellular organisms as “metaorganisms.” The goal of the Collaborative Research Center “Origin and Function of Metaorganisms” is to understand why and how microbial communities form long-term associations with hosts from diverse taxonomic groups, ranging from sponges to humans in addition to plants. Methods In order to optimize the choice of analysis procedures, which may differ according to the host organism and question at hand, we systematically compared the two main technical approaches for profiling microbial communities, 16S rRNA gene amplicon and metagenomic shotgun sequencing across our panel of ten host taxa. This includes two commonly used 16S rRNA gene regions and two amplification procedures, thus totaling five different microbial profiles per host sample. Conclusion While 16S rRNA gene-based analyses are subject to much skepticism, we demonstrate that many aspects of bacterial community characterization are consistent across methods. The resulting insight facilitates the selection of appropriate methods across a wide range of host taxa. Overall, we recommend single- over multi-step amplification procedures, and although exceptions and trade-offs exist, the V3 V4 over the V1 V2 region of the 16S rRNA gene. Finally, by contrasting taxonomic and functional profiles and performing phylogenetic analysis, we provide important and novel insight into broad evolutionary patterns among metaorganisms, whereby the transition of animals from an aquatic to a terrestrial habitat marks a major event in the evolution of host-associated microbial composition.
BackgroundThe interplay of epigenetic processes and the intestinal microbiota may play an important role in intestinal development and homeostasis. Previous studies have established that the microbiota regulates a large proportion of the intestinal epithelial transcriptome in the adult host, but microbial effects on DNA methylation and gene expression during early postnatal development are still poorly understood. Here, we sought to investigate the microbial effects on DNA methylation and the transcriptome of intestinal epithelial cells (IECs) during postnatal development.MethodsWe collected IECs from the small intestine of each of five 1-, 4- and 12 to 16-week-old mice representing the infant, juvenile, and adult states, raised either in the presence or absence of a microbiota. The DNA methylation profile was determined using reduced representation bisulfite sequencing (RRBS) and the epithelial transcriptome by RNA sequencing using paired samples from each individual mouse to analyze the link between microbiota, gene expression, and DNA methylation.ResultsWe found that microbiota-dependent and -independent processes act together to shape the postnatal development of the transcriptome and DNA methylation signatures of IECs. The bacterial effect on the transcriptome increased over time, whereas most microbiota-dependent DNA methylation differences were detected already early after birth. Microbiota-responsive transcripts could be attributed to stage-specific cellular programs during postnatal development and regulated gene sets involved primarily immune pathways and metabolic processes. Integrated analysis of the methylome and transcriptome data identified 126 genomic loci at which coupled differential DNA methylation and RNA transcription were associated with the presence of intestinal microbiota. We validated a subset of differentially expressed and methylated genes in an independent mouse cohort, indicating the existence of microbiota-dependent “functional” methylation sites which may impact on long-term gene expression signatures in IECs.ConclusionsOur study represents the first genome-wide analysis of microbiota-mediated effects on maturation of DNA methylation signatures and the transcriptional program of IECs after birth. It indicates that the gut microbiota dynamically modulates large portions of the epithelial transcriptome during postnatal development, but targets only a subset of microbially responsive genes through their DNA methylation status.Electronic supplementary materialThe online version of this article (10.1186/s13073-018-0534-5) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.