Load balancing is an efficient mechanism to distribute loads over cloud resources in a way that maximizes resource utilization and minimizes response time. Metaheuristic techniques are powerful techniques for solving the load balancing problems. However, these techniques suffer from efficiency degradation in large scale problems. This paper proposes three main contributions to solve this load balancing problem. First, it proposes a heterogeneous initialized load balancing (HILB) algorithm to perform a good task scheduling process that improves the makespan in the case of homogeneous or heterogeneous resources and provides a direction to reach optimal load deviation. Second, it proposes a hybrid load balance based on genetic algorithm (HLBGA) as a combination of HILB and genetic algorithm (GA). Third, a newly formulated fitness function that minimizes the load deviation is used for GA. The simulation of the proposed algorithm is implemented in the cases of homogeneous and heterogeneous resources in cloud resources. The simulation results show that the proposed hybrid algorithm outperforms other competitor algorithms in terms of makespan, resource utilization, and load deviation.
Spectrum Sensing in wideband cognitive radio networks is considered one of the challenging issues facing opportunistic utilization of the frequency spectrum. Collaborative compressive sensing has been proposed as an effective technique to alleviate some of these challenges through efficient sampling that exploits the underlying sparse structure of the measured frequency spectrum. In this paper, we propose to model this problem as a compressive support recovery problem, and apply the adaptive Sequential Compressive Sensing (SCS) approach to recover spectrum holes. We propose several fusion techniques to apply the proposed approach in a collaborative manner.The experimental analysis through simulations shows that the proposed scheme can substantially increase the probability of spectrum hole detection as compared to traditional CS recovery approaches while using a very low sampling rate analog to information converter, and without requiring the knowledge of any statistical information about the environmental noise.
No abstract
Abstract-Spectrum sensing in wideband cognitive radio networks is challenged by several factors such as hidden primary users, overhead on network resources, and the requirement of high sampling rate. Compressive sensing has been proven effective to elevate some of these problems through efficient sampling and exploiting the underlying sparse structure of the measured frequency spectrum. In this paper, we propose an approach for collaborative compressive spectrum sensing. The proposed approach achieves improved sensing performance through utilizing Kronecker sparsifying bases to exploit the two dimensional sparse structure in the measured spectrum at different, spatially separated cognitive radios. Experimental analysis through simulation shows that the proposed scheme can substantially reduce the mean square error (MSE) of the recovered power spectrum density over conventional schemes while maintaining the use of a low-rate ADC. We also show that we can achieve dramatically lower MSE under low compression ratios using a dense measurement matrix but using Nyquist rate ADC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.