Coronavirus disease 2019 (Covid-19) is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) which is responsible for a global pandemic that started in late 2019 in Wuhan, China. To prevent the worldwide spread of this highly pathogenic virus, development of an effective and safe vaccine is urgently needed. The SARS-CoV-2 and SARS-CoV share a high degree of genetic and pathologic identity and share safety and immune-enhancement concerns regarding vaccine development. Prior animal studies with first generation (whole virus-based) preparations of SARS-CoV vaccines (inactivated and attenuated vaccine modalities) indicated the possibility of increased infectivity or eosinophilic infiltration by immunization. Therefore, development of second and third generation safer vaccines (by using modern vaccine platforms) is actively sought for this viral infection.The spike (S) protein of SARS-CoVs is the main determinant of cell entry and tropism and is responsible for facilitating zoonosis into humans and sustained person-to-person transmission. Furthermore, 'S' protein contains multiple neutralizing epitopes that play an essential role in the induction of neutralizing antibodies (nAbs) and protective immunity. Moreover, T-cell responses against the SARS-CoV-2 'S' protein have also been characterized that correlate to the IgG and IgA antibody titres in Covid-19 patients. Thus, S protein is an obvious candidate antigen for inclusion into vaccine platforms against SARS-CoV-2 viral infection. This
Summary By the age of 5 years, virtually all children have been infected by group A rotavirus (RVA), which is responsible for around half million mortality annually prior to vaccination. Relatively high rate of the morbidity and mortality highlights the necessity of applying preventive procedures particularly in developing countries. Two live attenuated RVA vaccines (Rotarix and RotaTeq) are licensed and now being used in many countries worldwide. Although these vaccines are shown to reduce the mortality up to 50%, several key questions yet remained to answer. Indeed, the licensed RV vaccines were found to be less effective in countries of sub‐Saharan Africa and Southeast Asia. Therefore, developing next generation RVA vaccines is warranted. VP6 is highly abundant and conserved protein that forms the middle layer of RV particles and was shown to be both antigenic and immunogenic. Although it does not induce neutralizing antibodies, different VP6 preparations were found to induce homologous and cross‐reactive immune responses with partial protection from RVA replication. Although the molecular mechanisms are not fully elucidated, VP6‐based RVA vaccine candidates are worthy of further consideration. This review aims to focus on different aspects of VP6 protein and its potentiality for an alternative RV vaccine against RV disease.
Rotaviruses are the dominant cause of severe acute gastroenteritis in children under 5 years of age. Previous studies showed that some children are less susceptible to rotavirus gastroenteritis. It has been shown that this resistance depends on the rotavirus genotype and also human histo‐blood group antigens (HBGAs), which works as a receptor for rotavirus surface protein (VP4). The present study aimed to evaluate the human genetic susceptibility to rotavirus gastroenteritis in Iran and to obtain a comparative analysis between rotavirus gastroenteritis and secretor or Lewis status in case and control groups in the Iranian population. The study was performed on fecal specimens from 108 children with acute rotavirus gastroenteritis from 2015 to 2017. A total of 50 fecal specimens from children with acute gastroenteritis of unknown etiology were also used as a control group. After the genotyping of positive rotavirus cases and human HBGAs by Sanger sequencing, the phylogenetic tree analysis showed that all rotavirus strains from Iran belonged to P[II]. The most common genotype was P[8] (n = 102; 94.4%), while the remaining belonged to P[4] (n = 3; 2.8%) and P[6] (n = 3; 2.8%) genotypes. The P[8] genotype was found to be associated with secretor and Lewis positive status (p < .05).
Due to the limitations and safety issues of the two currently approved live attenuated rotavirus (RV) vaccines "RotaTeq and Rotarix," studies on nonreplicating sources of RV vaccines and search for proper RV antigens are actively carried out. The adjuvant activity of NSP4 and highly immunogenic properties of RV VP6 protein prompted us to consider the construction of a NSP4-VP6 fusion protein and to assess the anti-VP6 IgG, IgA, and IgG subclass responses induced by Escherichia coli-derived NSP4-VP6 fusion protein compared to that of VP6 protein with/without formulation in Montanide ISA 50V2 (M50) in BALB/c mice. Results indicated to the proper expression of the fused NSP4-VP6 and VP6 proteins in E. coli. Intraperitoneal immunization by M50 formulated NSP4-VP6 fusion protein (M5+NSP4-VP6) induced the highest titration of VP6-specific IgG and IgA responses compared to the other groups. Indeed, the presence of NSP4 resulted to the induction of stronger humoral immune responses against the fused protein compared to that elicited by administration of VP6 protein alone (with/without M50 formulation), implying the adjuvant properties of NSP4 for the fused protein. Moreover, the "M50+NSP4-VP6" formulation induced higher serum IgG2a titers than IgG1 and increased Interferon-γ levels, despite unchanged interleukin-4 amounts compared to other groups, indicating Th1-oriented responses with a possible role of NSP4. In conclusion, this study further highlights the potentiality of NSP4-VP6 fusion protein as an efficient and cost-effective immunogen in the field of RV vaccine development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.