Background and aim: Vibrio cholerae is a gram-negative bacterial pathogen that causes diarrheal disease. One of the most pathogenic factors of V. cholerae is toxin-coregulated pili. This pilus is required as the first factor in the colonization and bacterial persistence in the small intestine. Materials and Methods: In this study, V. cholerae toxin-coregulated pili A (TCPA) gene was amplified using PCR method. The above genes were purified and then expressed by being cloned into the pGEX4T-1 plasmid. Then the recombinant plasmid structure was introduced into the E. coli bacterium. Protein production was carried out by IPTG induction and optimization of culture conditions. The recombinant proteins were purified using Glutathione S-Transferase (GST) Assay Kit and western blot test was then carried out for confirmation of recombinant protein. Protein levels were measured using Bradford protein assay. Results: The results of the present study proved the successful expression of recombinant proteins in E. coli cells. The recombinant protein was purified by affinity chromatography. The reaction pattern between these proteins and their anti-antibodies showed that these proteins have antigenic properties. Conclusion: Since it was proved that these proteins have antigenic properties in this study, they may be used as an appropriate antigen for vaccination of V. cholera.
Background and Purpose: Shigella is a human shigellosis and its lipopolysaccharide is identified by 4TLR. The 4TLR is a family of pseudo-TOLL receptors and many immune routes are triggered by stimulating these receptors. Many studies show increasing of 4TLR expression in Mesenchyme stem cells under the influence of lipopolysaccharide. The main objective of this study was to identify the appropriate lipopolysaccharide of Shigella strains by stimulating the immune system for vaccine studies. Materials and Methods: In this experimental study, the stem cell of human Mesenchymal derived from bone marrow was treated by three dilution of 0.1, 0.01, and 0.001 extract of Shigella strains (Flexneri, Dysentery and Sonnei) containing lipopolysaccharide. Then, the expression of 4TLR at RNA level was evaluated by RT-PCR and Q-PCR techniques. Cells treated with phosphate buffer saline were considered as control group. Findings: The expression of 4TLR was observed in all treatments groups except for treatment groups with relative concentration of 0.001 sonnei and dysentery as well as control group. Changes in 4TLR expression were dose-dependent on all treatment groups. The highest expression was related to the treatment with Shigella Flexneri extract and the smallest was related to Shigella sonnei. The use of pure lipopolysaccharide of Escherichia coli as a positive control showed that the lipopolysaccharide in Shigella extract is responsible for increasing the expression of 4TLR. Conclusion: given the increased expression of 4TLR by Shigella extract, this extract is recommended to increase the efficacy of the vaccine.
This experiment investigates the effects of utilizing Rahnama cultivar with high non-starchy polysaccharide content and supplementation of xylanase enzyme in poultry feed on the productivity features, nutrient digestibility and intestinal enzymes activity of 21-47 week laying hens. The experiment was conducted quite randomly and in factorial design that included eight treatments with 4 wheat levels (zero, 23, 46 and 69% that contained 1.8, 2.0, 2.2, 2.4% of xylose respectively) and two level enzymes (with and without enzyme) and 5 replications (6 hens) in each replication. During the experiment, by xylose level increase in diet, the weight (p>0.05) and mass of the egg (p>0.01) decreased and feed conversion ratio increased (p>0.05) but there was no effect on feed consumption and egg production rate. Diet supplementation with xylanase resulted in egg production increase (p>0.05), weight and mass increase of eggs (p>0.01) and improved feed conversion ratio (p>0.01). Xylose levels increase resulted in decrease in fat and metabolic energy digestibility of the diet (p>0.05); and, amylase enzymes activity in duodenum and amino peptidase, and lipase in duodenum and jejunum (p>0.01) increased. However, xylanase supplement had no effect on any intestinal enzymes. Diet supplementation with xylanase decreased viscosity of ileum (p>0.01). Increased xylanase level in diet resulted in decreased productivity features of laying hens, increased intestinal enzyme activity and decreased fat and metabolic energy digestibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.