Direct bone-to-implant contact, defined as "osseointegration", is considered most optimal for long-term stability and survival of dental implants. However, the possibility of the formation of a tooth-like attachment apparatus around implants has also been demonstrated. The purpose of this study was to explore the formation of periodontal tissues around titanium implants using a novel and unique experimental model. After resection of the crowns of the maxillary canine teeth in nine mongrel dogs, the roots were hollowed to a depth of 5 mm leaving a thin dentinal wall. Slits were prepared in the cavity wall to create passages from the chamber to the periodontal ligament area. A custom-made, titanium implant was placed into the center of each chamber. Machined, titanium plasma sprayed (TPS) and sand blasted with large grit and acid attacked (SLA) surfaces were used. A collagen barrier was placed over the submerged chamber. Following 4 months of healing, jaw sections were processed for histology. Newly formed periodontal ligament, alveolar bone, and root cementum filled the space between the implant and the wall of the chamber. Ingrown bone was neither in contact with dentin nor with the implant. Thus, an interposed soft connective tissue layer was present. Healing by fibrous encapsulation was observed around most implants. However, cellular cementum was deposited on one TPS and one SLA implant and on the dentinal walls of the chamber. This study shows a remarkable capacity for new periodontal tissue formation at a site where no such tissues ever existed. Maintenance of original periodontal tissue domains most likely prevented osseointegration of the implants. The cementum layer deposited on two implants was likely formed through cementoconductivity rather than by differentiation of periodontal ligament cells upon contact with the implant surface.
Periodontal ligament cells play a crucial role in the regeneration of periodontal tissues and an undifferentiated mesenchymal cell subset is thought to exist within this population. The aim of this study was to assess the osteogenic differentiation potential of human periodontal ligament fibroblasts (hPDLFs) in three dimensional (3D)-osteogenic culture environment following encapsulation in chitosan-hydroxyapatite (C/HA) microspheres with the size range of 350-450 microm. Human PDLF cultures were established and three experimental groups were formed: (i) two-dimensional (2D)-culture as single cell monolayer, (ii) 3D-static culture of C/HA encapsulated hPDLFs, and (iii) 3D-dynamic culture of C/HA encapsulated hPDLFs in a rotating wall vessel bioreactor. The cells were cultured in standard culture medium supplemented with beta-glycerophosphate, dexamethasone, and ascorbic acid. After 21 days, immunohistochemistry was performed using antibodies against osteonectin, osteopontin, bone-sialoprotein, and osteocalcin as osteogenic differentiation markers. Phase-contrast and scanning electron microscopy observations were used for histological and morphological evaluation. The combined effects of osteoinductive medium and HA-containing composite microsphere material on encapsulated hPDLFs resulted in the transformation of a considerable portion of the cells into osteoblastic lineage at the end of the experiments. Results demonstrate the ability of hPDLFs to undergo osteogenic differentiation upon induction in vitro, both under 2D and 3D culture conditions. C/HA microspheres in microgravity bioreactor may serve as a suitable 3D environment to support the osteogenic differentiation of human PDLFs, in vitro.
Results of this study indicate that all techniques led to an improvement of all clinical parameters except PD from baseline. However, CTG increased KT considerably compared to GTR. The final esthetic results were similar for the two membranes and connective tissue graft.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.