Nuclear Star Clusters (NSCs) are commonly observed in the centres of most galactic nuclei, including our own Milky Way. While their study can reveal important information about the build-up of the innermost regions of galaxies, the physical processes that regulate their formation are still poorly understood. NSCs might have been formed through gas infall and subsequent in situ star formation, and/or through the infall and merging of multiple star clusters into the centre of the galaxy. Here, we investigate the viability of the latter, by studying direct N-body simulations of inspiralling clusters to the centre of a Milky-Way-like nuclear bulge that hosts a massive black hole. We find that the NSC that forms through this process can show both morphological and kinematical properties that make it comparable with observations of the Milky Way NSC, including significant rotation-a fact that has been so far attributed mainly to gas infall. We explore its kinematic evolution, to see if and how the merger history can imprint fossil records on its dynamical structure. Moreover, we study the effect of stellar foreground contamination in the line-of-sight kinematics of the NSC. Our study shows that no fine tuning of the orientation of the infalling globular clusters is necessary to result in a rotating NSC. We suggest that cluster-inspiral is a viable mechanism for the formation of rotating NSCs.
We present new evidence for eight early-type galaxies (ETGs) from the CALIFA Survey that show clear rotation around their major photometric axis ("prolate rotation"). These are LSBCF560-04, NGC 0647, NGC 0810, NGC 2484, NGC 4874, NGC 5216, NGC 6173, and NGC 6338. Including NGC 5485, a known case of an ETG with stellar prolate rotation, as well as UGC 10695, a further candidate for prolate rotation, we report ten CALIFA galaxies in total that show evidence for such a feature in their stellar kinematics. Prolate rotators correspond to ∼9% of the volume-corrected sample of CALIFA ETGs, a fraction much higher than previously reported. We find that prolate rotation is more common (∼27%) among the most massive ETGs (M * 2 × 10 11 M ). We investigated the implications of these findings by studying N-body merger simulations, and we show that a prolate ETG with rotation around its major axis could be the result of a major polar merger, with the amplitude of prolate rotation depending on the initial bulgeto-total stellar mass ratio of its progenitor galaxies. Additionally, we find that prolate ETGs resulting from this formation scenario show a correlation between their stellar line-of-sight velocity and higher order moment h 3 , opposite to typical oblate ETGs, as well as a double peak of their stellar velocity dispersion along their minor axis. Finally, we investigated the origin of prolate rotation in polar galaxy merger remnants. Our findings suggest that prolate rotation in massive ETGs might be more common than previously expected, and can help toward a better understanding of their dynamical structure and formation origin.
We present the formation of a Kinematically Decoupled Core (KDC) in an elliptical galaxy, resulting from a major merger simulation of two disk galaxies. We show that although the two progenitor galaxies are initially following a prograde orbit, strong reactive forces during the merger can cause a short-lived change of their orbital spin; the two progenitors follow a retrograde orbit right before their final coalescence. This results in a central kinematic decoupling and the formation of a large-scale (∼2 kpc radius) counter-rotating core (CRC) at the center of the final elliptical-like merger remnant (M * = 1.3 × 10 11 M ), while its outer parts keep the rotation direction of the initial orbital spin. The stellar velocity dispersion distribution of the merger remnant galaxy exhibits two symmetrical off-centered peaks, comparable to the observed "2-σ galaxies". The KDC/CRC consists mainly of old, pre-merger population stars (older than 5 Gyr), remaining prominent in the center of the galaxy for more than 2 Gyr after the coalescence of its progenitors. Its properties are consistent with KDCs observed in massive elliptical galaxies. This new channel for the formation of KDCs from prograde mergers is in addition to previously known formation scenarios from retrograde mergers and can help towards explaining the substantial fraction of KDCs observed in early-type galaxies.
Nuclear Star Clusters (NSCs) are commonly observed in the centers of most galaxies, including our Milky Way (MW). While their study can reveal important information about the innermost regions of galaxies, the physical processes regulating their formation are still poorly understood. We explore a possible merger origin of NSCs by studying direct N-body simulations of globular clusters (GCs) that are initially randomly distributed in the outskirts and consecutively infall to the center of a MW-like nuclear bulge. We find that the NSC that forms through this process shows a significant amount of rotation, and both morphological and kinematic properties are comparable with observations of the MW NSC. We show that no finetuning of the orientation of the infalling GCs is necessary to result in a rotating NSC. This study shows the plausibility of the cluster infall scenario and can help towards setting better constraints to the formation history of NSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.