Atrial fibrillation (AF) is the most common arrhythmia affecting elderly patients. Management and treatment of AF in this rapidly growing population of older patients involve a comprehensive assessment that includes comorbidities, functional, and social status. The cornerstone in therapy of AF is thromboembolic protection. Anticoagulation therapy has evolved, using conventional or newer medications. Percutaneous left atrial appendage closure is a new invasive procedure evolving as an alternative to systematic anticoagulation therapy. Rate or rhythm control leads to relief in symptoms, fewer hospitalizations, and an improvement in quality of life. Invasive methods, such as catheter ablation, are the new frontier of treatment in maintaining an even sinus rhythm in this particular population.
Left ventricular enlargement and dysfunction are fundamental components of dilated cardiomyopathy (DCM). DCM is a major cause of heart failure and cardiac transplantation. A wide variety of etiologies underlie acquired and familial DCM. Familial disease is reported in 20% to 35% of cases. A genetic substrate is recognized in at least 30% of familial cases. A recently proposed scheme defines DCM as a continuum of subclinical and clinical phenotypes. The evolution of classification systems permitted use of effective treatment strategies in disorders sharing the same structural and functional characteristics and common clinical expression. The major causes of death are progressive heart failure and sudden cardiac death secondary to ventricular arrhythmias or less commonly bradyarrhythmias. Remarkable progress has been made in survival owing to well-defined evidence-based therapies and appropriate guidelines for risk stratification and sudden cardiac death prevention measures. Neurohormonal antagonists and device therapy decreased all-cause mortality in adult patients with DCM. However, additional red flags in diagnosis have to be addressed in everyday practice, and cardiologists have to be aware of the subsequent effect on risk stratification and treatment plan. Genetic substrate cannot be modified, but the presence of a peculiar type of gene mutation modifies thresholds for implantable cardioverter defibrillator (ICD) implantation. DCM is part of the spectrum of heart failure which is a syndrome with certain morphological and functional characteristics. Although significant progress has been achieved in the management of patients with DCM, it seems that the future treatments of this entity will be related to the specific pathological substrate.
Aims To study the impact of genotype on the performance of the 2019 risk model for arrhythmogenic right ventricular cardiomyopathy (ARVC). Methods and results The study cohort comprised 554 patients with a definite diagnosis of ARVC and no history of sustained ventricular arrhythmia (VA). During a median follow-up of 6.0 (3.1,12.5) years, 100 patients (18%) experienced the primary VA outcome (sustained ventricular tachycardia, appropriate implantable cardioverter defibrillator intervention, aborted sudden cardiac arrest, or sudden cardiac death) corresponding to an annual event rate of 2.6% [95% confidence interval (CI) 1.9–3.3]. Risk estimates for VA using the 2019 ARVC risk model showed reasonable discriminative ability but with overestimation of risk. The ARVC risk model was compared in four gene groups: PKP2 (n = 118, 21%); desmoplakin (DSP) (n = 79, 14%); other desmosomal (n = 59, 11%); and gene elusive (n = 160, 29%). Discrimination and calibration were highest for PKP2 and lowest for the gene-elusive group. Univariable analyses revealed the variable performance of individual clinical risk markers in the different gene groups, e.g. right ventricular dimensions and systolic function are significant risk markers in PKP2 but not in DSP patients and the opposite is true for left ventricular systolic function. Conclusion The 2019 ARVC risk model performs reasonably well in gene-positive ARVC (particularly for PKP2) but is more limited in gene-elusive patients. Genotype should be included in future risk models for ARVC.
Atrial fibrillation (AF) is the most common arrhythmia in clinical practice. Several conventional and novel predictors of AF development and progression (from paroxysmal to persistent and permanent types) have been reported. The most important predictor of AF progression is possibly the arrhythmia itself. The electrical, mechanical and structural remodeling determines the perpetuation of AF and the progression from paroxysmal to persistent and permanent forms. Common clinical scores such as the hypertension, age ≥ 75 years, transient ischemic attack or stroke, chronic obstructive pulmonary disease, and heart failure and the congestive heart failure, hypertension, age ≥ 75 years, diabetes mellitus, stroke/transient ischemic attack, vascular disease, age 65-74 years, sex category scores as well as biomarkers related to inflammation may also add important information on this topic. There is now increasing evidence that even in patients with so-called lone or idiopathic AF, the arrhythmia is the manifestation of a structural atrial disease which has recently been defined and described as fibrotic atrial cardiomyopathy. Fibrosis results from a broad range of factors related to AF inducing pathologies such as cell stretch, neurohumoral activation, and oxidative stress. The extent of fibrosis as detected either by late gadolinium enhancement-magnetic resonance imaging or electroanatomic voltage mapping may guide the therapeutic approach based on the arrhythmia substrate. The knowledge of these risk factors may not only delay arrhythmia progression, but also reduce the arrhythmia burden in patients with first detected AF. The present review highlights on the conventional and novel risk factors of development and progression of AF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.