Wood modification is now widely recognized as offering enhanced properties of wood and overcoming issues such as dimensional instability and biodegradability which affect natural wood. Typical wood modification systems use chemical modification, impregnation modification or thermal modification, and these vary in the properties achieved. As control and understanding of the wood modification systems has progressed, further opportunities have arisen to add extra functionalities to the modified wood. These include UV stabilisation, fire retardancy, or enhanced suitability for paints and coatings. Thus, wood may become a multi-functional material through a series of modifications, treatments or reactions, to create a high-performance material with previously impossible properties. In this paper we review systems that combine the well-established wood modification procedures with secondary techniques or modifications to deliver emerging technologies with multi-functionality. The new applications targeted using this additional functionality are diverse and range from increased electrical conductivity, creation of sensors or responsive materials, improvement of wellbeing in the built environment, and enhanced fire and flame protection. We identified two parallel and connected themes: (1) the functionalisation of modified timber and (2) the modification of timber to provide (multi)-functionality. A wide range of nanotechnology concepts have been harnessed by this new generation of wood modifications and wood treatments. As this field is rapidly expanding, we also include within the review trends from current research in order to gauge the state of the art, and likely direction of travel of the industry.
The effect of four methods of surface activation for improved adhesion of wood polymer composites (WPCs)
The function of altering weathering factors and degradation mechanisms are essential for understanding the weathering process of materials. The goal of this work was to develop a method for the acceleration of natural weathering and to investigate the molecular, microstructure and macrostructure degradation of wood caused by the process. Tests were performed in the whole month of July, which, according to previous research, is considered as the most severe for weathering of wood micro-sections. Sample appearance was evaluated by colour measurement. Scanning electron microscopy was used for evaluation of the structural integrity and changes in the microstructure of wood morphological components. Changes on the molecular level were assessed by means of FT-IR spectroscopy. Observation of the effects of weathering allowed a better understanding of the degradation process. Typical structural damage, such as cracks on bordered pits and cross-field pits, and, as a consequence, their erosion, revealed the sequence of the degradation process. It was confirmed that earlywood was more susceptible to damage than latewood. Even if the weathering test was conducted for a relatively short time (28 days) the ultra-thin wood samples changed noticeably. The progress of alteration was similar as usually noticed for wood surfaces, but occurred at shorter exposure times. The estimated acceleration factor was ×3, compare to the natural weathering kinetics of wood. The research methodology presented can be used for the determination of the weather dose-response models essential to estimate the future service life performance of timber elements.
Bio-based building materials offer a wide range of outlooks, from traditional rustic to modern design products. Recent development in the science of materials significantly improves their functional performance. However, when considering the use of bio-materials in outdoor environments, materials will deteriorate due to processes like weathering, oxidation, biodegradation, wear, and decay. Consequentially, biomaterials may lose visual appeal, leading to a perceived need for replacement even if the material is far from reaching functional failure. Visual assessment is the most direct method for evaluation of the aesthetic appearance of materials. However, it possesses a high degree of subjectivity when performed by an untrained person. On the contrary, measurement of surface properties with dedicated sensors provides objective values that might be related to the current state of the material in use. Recent developments in field of optics and electronics opens a new possibility to perform measurements in-situ. Colour-, gloss-, or spectro-photo-meters allow non-destructive measurements without particular sample preparation. Since all of the above techniques provide complementary information, the multi-sensor approach is more frequently suggested for applied research. The material state can be assessed regularly during service life. In this case, such measurement turns into monitoring. The paper illustrates examples of assessment and monitoring of biomaterials' degradation due to weathering. Direct implementation of various sensors is demonstrated. A proposal for the approach of combining data provided by various sensing techniques with data mining is also presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.