Graph modeling allows numerous security problems to be tackled in a general way, however, little work has been done to understand their ability to withstand adversarial attacks. We design and evaluate two novel graph attacks against a state-of-the-art network-level, graph-based detection system. Our work highlights areas in adversarial machine learning that have not yet been addressed, specifically: graph-based clustering techniques, and a global feature space where realistic attackers without perfect knowledge must be accounted for (by the defenders) in order to be practical. Even though less informed attackers can evade graph clustering with low cost, we show that some practical defenses are possible.Comment: ACM CCS 201
Technical Support Scams (TSS), which combine online abuse with social engineering over the phone channel, have persisted despite several law enforcement actions. Although recent research has provided important insights into TSS, these scams have now evolved to exploit ubiquitously used online services such as search and sponsored advertisements served in response to search queries. We use a data-driven approach to understand search-and-ad abuse by TSS to gain visibility into the online infrastructure that facilitates it. By carefully formulating tech support queries with multiple search engines, we collect data about both the support infrastructure and the websites to which TSS victims are directed when they search online for tech support resources. We augment this with a DNSbased amplification technique to further enhance visibility into this abuse infrastructure. By analyzing the collected data, we provide new insights into search-and-ad abuse by TSS and reinforce some of the findings of earlier research. Further, we demonstrate that tech support scammers are (1) successful in getting major as well as custom search engines to return links to websites controlled by them, and (2) they are able to get ad networks to serve malicious advertisements that lead to scam pages. Our study period of approximately eight months uncovered over 9,000 TSS domains, of both passive and aggressive types, with minimal overlap between sets that are reached via organic search results and sponsored ads. Also, we found over 2,400 support domains which aid the TSS domains in manipulating organic search results. Moreover, to our surprise, we found very little overlap with domains that are reached via abuse of domain parking and URL-shortening services which was investigated previously. Thus, investigation of search-and-ad abuse provides new insights into TSS tactics and helps detect previously unknown abuse infrastructure that facilitates these scams.
The Domain Name System (DNS) is fundamental to communication on the Internet. Therefore, any proposed changes or extensions to DNS can have profound consequences on network communications. In this paper, we explore the implications of a recent extension to DNS called EDNS Client Subnet (ECS). This extension extends the visibility of client information to more domain operators by providing a prefix of a client's IP address to DNS nameservers above the recursive nameserver. This raises numerous questions about the impact of such changes on network communications that rely on DNS. In this paper, we present the results of a longitudinal study that measures the deployment of ECS using several DNS vantage points. We show that, despite being an optional extension, ECS has seen steady adoption over time-even for sites that do not benefit from its use. Additionally, we observe that the client subnet provided by ECS may provide less privacy than originally thought, with most subnets corresponding to a /24 CIDR or smaller. Lastly, we observe several positive and negative consequences resulting from the introduction of DNS. For example, DNS can help aid security efforts when analyzing DNS data above the recursive due to the addition of client network information. However, that same client information has the potential to exacerbate existing security issues like DNS leakage. Ultimately, this paper discusses how small changes to fundamental protocols can result in unintended consequences that can be both positive and negative.
Technical Support Scams (TSS), which combine online abuse with social engineering over the phone channel, have persisted despite several law enforcement actions. The tactics used by these scammers have evolved over time and they have targeted an ever increasing number of technology brands. Although recent research has provided important insights into TSS, these scams have now evolved to exploit ubiquitously used online services such as search and sponsored advertisements served in response to search queries. We use a data-driven approach to understand search-and-ad abuse by TSS to gain visibility into the online infrastructure that facilitates it. By carefully formulating tech support queries with multiple search engines, we collect data about both the support infrastructure and the websites to which TSS victims are directed when they search online for tech support resources. We augment this with a DNS-based amplification technique to further enhance visibility into this abuse infrastructure. By analyzing the collected data, we provide new insights into search-and-ad abuse by TSS and reinforce some of the findings of earlier research. Further, we demonstrate that tech support scammers are (1) successful in getting major as well as custom search engines to return links to websites controlled by them, and (2) they are able to get ad networks to serve malicious advertisements that lead to scam pages. Our study period of approximately eight months uncovered over 9,000 TSS domains, of both passive and aggressive types, with minimal overlap between sets that are reached via organic search results and sponsored ads. Also, we found over 2,400 support domains which aid the TSS domains in manipulating organic search results. Moreover, to our surprise, we found very little overlap with domains that are reached via abuse of domain parking and URL-shortening services which was investigated previously. Thus, investigation of search-and-ad abuse provides new insights into TSS tactics and helps detect previously unknown abuse infrastructure that facilitates these scams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.