We study the dynamical behaviour, as t → ∞, of admissible weak solutions of the scalar balance lawwith x ∊ ≡ ℝ/Lℤ, L > 0, 0 < t < ∞, and f(·) ∊ C2, g(·) ∊ C1. We assume that f(·) is strictly convex, while g(·) is of at most linear growth, has finitely many zeros and changes sign across them. We show that, if u(·,t) stays bounded in L∞(S1), as t → ∞, then it either converges to a constant state or approaches asymptotically a rotating wave, i.e. an admissible weak solution of (1.1) of the form ũ(x − ct), c ∈ ℝ. Hence, the asymptotic state of every bounded solution of (1.1) consists precisely of either an equilibrium or one time-periodic solution. Furthermore, each one of these two alternatives is characterised by the Conley indices of the critical points of the ordinary differential equation .
By using the fibering method, we study the existence of non-negative solutions for a class of indefinite quasilinear elliptic problems on unbounded domains with noncompact boundary, in the presence of competing subcritical and supercritical lower order nonlinearities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.