An analytical method and algorithm for great elliptic sailing (GES) calculations is presented. The method solves the complete GES problem calculating not only the great elliptic arc distance, but also other elements of the sailing such as the geodetic coordinates of intermediate points along the great elliptic arc. The proposed formulas provide extremely high accuracies and are straightforward to be exploited immediately in the development of navigational software, without the requirement to use advanced numerical methods. Their validity and effectiveness have been verified with numerical tests and comparisons to extremely accurate geodetic methods for the direct and inverse geodetic problem.
Electronic navigational charts (ENCs) are geospatial databases, compiled for the operational use of Electronic Chart Display and Information systems (ECDIS) according to strict technical specifications of the International Hydrographic Organization (IHO). ECDIS is a GIS system designed for marine navigation according to the relevant standards of the International Maritime Organization (IMO). The international standards for ENCs and ECDIS, issued by the IHO and IMO, cover many aspects of the portrayal of ENCs in ECDIS but do not specify or recommend map projections. Consequently, in some cases, the unjustified employment of map projections by the manufacturers has caused certain functional drawbacks and inadequacies. This article reviews, evaluates and supplements the results of earlier studies on the selection of map projections for the depiction of ENCs in ECDIS and proposes a reasonable set of suitable projections with pertinent selection/implementation rules. These proposals took into consideration that ECDIS users (navigators) are not GIS experts or professional cartographers and consequently, the proposed election/implementation rules have to be simple and straightforward.
The article presents a new hybrid bio-optical transformation (HBT) method for the rapid modelling of bathymetry in coastal areas. The proposed approach exploits free-of-charge multispectral images and their processing by applying limited manpower and resources. The testbed area is a strait between two Greek Islands in the Aegean Sea with many small islets and complex seabed relief. The HBT methodology implements semi-analytical and empirical steps to model sea-water inherent optical properties (IOPs) and apparent optical properties (AOPs) observed by the Sentinel-2A multispectral satellite. The relationships of the calculated IOPs and AOPs are investigated and utilized to classify the study area into sub-regions with similar water optical characteristics, where no environmental observations have previously been collected. The bathymetry model is configured using very few field data (training depths) chosen from existing official nautical charts. The assessment of the HBT indicates the potential for obtaining satellite derived bathymetry with a satisfactory accuracy for depths down to 30 m.
Electronic navigational charts (ENCs) are specialised geospatial datasets, issued by or on the authority of a government or hydrographic office, in accordance with the International Hydrographic Organisation's (IHO) standards, specifications and symbol sets. The datasets generally comprise encoded information collected from hydrographic surveys, aimed primarily at the safety of navigation. Most ENCs are not openly available, since the encrypted datasets can be acquired through various license schemes via a centralised distribution network coordinated by two organisations operating on behalf of the coastal states that produce them. This paper describes a methodology and an integrated system developed at the National Technical University of Athens Cartography Laboratory for the generation of web-based nautical charts utilising open data and free software. The system compiles nautical charts compliant with IHO's S-101 latest standard; using open hydrospatial data retrieved from marine spatial data infrastructures (MSDI) and other qualified volunteered geographic information (VGI) sources. Open-source geospatial libraries and web-map vector technologies are used to build the system components and software scripts developed to enable automated compilation. The study also discusses how the system can be improved further by leveraging web services for end-to-end process automation and satellite-derived bathymetry for accurate depiction of seabed topography in low-depth areas.
Marine spatial “open” data infrastructures (MSDI) have a significant economic and societal potential for coastal nations and their realization is driven by the evolution of the International Hydrographic Organization’s (IHO) S-100 data model for facilitating marine domain interoperability and the World Wide Web Consortium’s (W3C) best practices for spatial data publishing on the Web. The recent European directive on open data and the re-use of public sector information, known as the “Open Data Directive” is a key driver towards the establishment of “open” MSDIs among other spatial data infrastructures. The paper discusses possible data architectures for the MSDIs, examines the maturity of open data platforms that they could be built upon and compares the most prominent marine spatial data models for their applicability in relation to three marine information domains. MSDIs can facilitate the continuous data capturing of spatial-temporal physical phenomena and human activities at sea and coastal areas, the corresponding data analysis and the decision-making for achieving continual improvement in the marine planning and management processes. MSDIs could play a key role in digital government transformation (DGT) for effective data sharing and offering marine services across various stakeholders. The information provided through a MSDI can be used for safe and efficient operation of maritime traffic, exploration and exploitation of marine resources, marine spatial planning (MSP), integrated coastal zone management (ICZM), environmental protection, and naval and maritime security.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.