Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic (DAergic) neurons in the substantia nigra and the gradual depletion of dopamine (DA). Current treatments replenish the DA deficit and improve symptoms but induce dyskinesias over time, and neuroprotective therapies are nonexistent. Here we report that Nuclear receptor-related 1 (Nurr1):Retinoid X receptor α (RXRα) activation has a double therapeutic potential for PD, offering both neuroprotective and symptomatic improvement. We designed BRF110, a unique in vivo active Nurr1:RXRα-selective lead molecule, which prevents DAergic neuron demise and striatal DAergic denervation in vivo against PD-causing toxins in a Nurr1-dependent manner. BRF110 also protects against PD-related genetic mutations in patient induced pluripotent stem cell (iPSC)-derived DAergic neurons and a genetic mouse PD model. Remarkably, besides neuroprotection, BRF110 up-regulates tyrosine hydroxylase (TH), aromatic l-amino acid decarboxylase (AADC), and GTP cyclohydrolase I (GCH1) transcription; increases striatal DA in vivo; and has symptomatic efficacy in two postneurodegeneration PD models, without inducing dyskinesias on chronic daily treatment. The combined neuroprotective and symptomatic effects of BRF110 identify Nurr1:RXRα activation as a potential monotherapeutic approach for PD.Parkinson's disease | target validation | neuroprotection
Objective: The expression of somatostatin receptors (SSTRs) and dopamine receptor 2 (DR2) in neuroendocrine tumors is of clinical importance as somatostatin analogues and dopamine agonists can be used for their localization and/or treatment. The objective of this study is to examine the expression of the five SSTR subtypes and DR2 in lung carcinoids (LCs). Methods: We conducted a retrospective study of 119 LCs from 106 patients [typical carcinoids (TCs): n = 100, and atypical carcinoids (ACs): n = 19]. The expression of all five SSTR subtypes and DR2 was evaluated immunohistochemically and correlated to clinicopathological data. In a subgroup of cases, receptor expression was further analyzed using semiquantitative RT-PCR. Results: SSTR2A was the SSTR subtype most frequently expressed immunohistochemically (72%), followed by SSTR1 (63%), SSTR5 (40%), and SSTR3 (20%), whereas SSTR4 was negative. DR2 was expressed in 74% and co-expressed with SSTR1 in 56%, with SSTR2A in 59%, with SSTR3 in 19%, and with SSTR5 in 37% of the tumors. Receptor expression was not related to the histological subtype, tumor aggressiveness (disease extent/grading) or functionality; however, DR2 was expressed more frequently in ACs than TCs (95 vs. 70%, p = 0.017). In a subset of patients, RT-PCR findings highly suggested that the expression of SSTR2A, SSTR3, DR2, and to a lesser extent that of SSTR1 and SSTR5 is the outcome of increased gene transcription. Conclusions: The high and variable immunohistochemical expression of the majority of SSTRs along with their co-expression with DR2 in LCs provides a rationale for their possible treatment with agents that target these receptors.
Duplication/triplication mutations of the SNCA locus, encoding alpha-synuclein (ASYN), and loss of function mutations in Nurr1, a nuclear receptor guiding midbrain dopaminergic neuron development, are associated with familial Parkinson’s disease (PD). As we age, the expression levels of these two genes in midbrain dopaminergic neurons follow opposite directions and ASYN expression increases while the expression of Nurr1 decreases. We investigated the effect of ASYN and Nurr1 age-related expression alterations in the pathogenesis of PD by coupling Nurr1 hemizygous with ASYN(s) (heterozygote) or ASYN(d) (homozygote) transgenic mice. ASYN(d)/Nurr1+/− (2-hit) mice, contrary to the individual genetic traits, developed phenotypes consistent with dopaminergic dysfunction. Aging ‘2-hit’ mice manifested kyphosis, severe rigid paralysis, L-DOPA responsive movement impairment and cachexia and died prematurely. Pathological abnormalities of phenotypic mice included SN neuron degeneration, extensive neuroinflammation and enhanced ASYN aggregation. Mice with two wt Nurr1 alleles [ASYN(d)/Nurr1+/+] or with reduced ASYN load [ASYN(s)/Nurr1+/−] did not develop the phenotype or pathology. Critically, we found that aging ASYN(d), in contrast to ASYN(s), mice suppress Nurr1-protein levels in a brain region–specific manner, which in addition to Nurr1 hemizygosity is necessary to instigate PD pathogenesis. Our experiments demonstrate that ASYN-dependent PD-related pathophysiology is mediated at least in part by Nurr1 down-regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.