In this paper we present a systematic and rigorous method for calculating the diffusion tensor for a Brownian particle moving in a periodic potential which is valid in arbitrary dimensions and for all values of the dissipation. We use this method to obtain an explicit formula for the diffusion coefficient in one dimension which is valid in the underdamped limit, and we also obtain higher order corrections to the Lifson-Jackson formula for the diffusion coefficient in the overdamped limit. A numerical method for calculating the diffusion coefficient is also developed and is shown to perform extremely well for all values of the dissipation.
In this paper we present a new method for improving the performance of the widely used Bounding Volume Hierarchies for collision detection. The major contribution of our work is a culling algorithm that serves as a generalization of the Separating Axis Theorem for non parallel axes, based on the well-known concept of support planes. We also provide a rigorous definition of support plane mappings and implementation details regarding the application of the proposed method to commonly used bounding volumes. The paper describes the theoretical foundation and an overall evaluation of the proposed algorithm. It demonstrates its high culling efficiency and in its application, significant improvement of timing performance with different types of bounding volumes and support plane mappings for rigid body simulations.
We investigate ion and impurity transport in turbulent, possibly anisotropic, magnetic fields. The turbulent magnetic field is modeled as a correlated stochastic field, with Gaussian distribution function and prescribed spatial auto-correlation function, superimposed onto a strong background field. The (running) diffusion coefficients of ions are determined in the three-dimensional environment, using two alternative methods, the semi-analytical decorrelation trajectory (DCT) method, and test-particle simulations. In a first step, the results of the test-particle simulations are compared with and used to validate the results obtained from the DCT method. For this purpose, a drift approximation was made in slab geometry, and relatively good qualitative agreement between the DCT method and the test-particle simulations was found. In a second step, the ion species He, Be, Ne and W, all assumed to be fully ionized, are considered under ITER-like conditions, and the scaling of their diffusivities is determined with respect to varying levels of turbulence (varying Kubo number), varying degrees of anisotropy of the turbulent structures and atomic number. In a third step, the test-particle simulations are repeated without drift approximation, directly using the Lorentz force, first in slab geometry, in order to assess the finite Larmor radius effects, and second in toroidal geometry, to account for the geometric effects. It is found that both effects are important, most prominently the effects due to toroidal geometry and the diffusivities are overestimated in slab geometry by an order of magnitude.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.