The detection of communities in graph datasets provides insight about a graph’s underlying structure and is an important tool for various domains such as social sciences, marketing, traffic forecast, and drug discovery. While most existing algorithms provide fast approaches for community detection, their results usually contain strictly separated communities. However, most datasets would semantically allow for or even require overlapping communities that can only be determined at much higher computational cost. We build on an efficient algorithm, Fox, that detects such overlapping communities. Fox measures the closeness of a node to a community by approximating the count of triangles which that node forms with that community. We propose LazyFox, a multi-threaded adaptation of the Fox algorithm, which provides even faster detection without an impact on community quality. This allows for the analyses of significantly larger and more complex datasets. LazyFox enables overlapping community detection on complex graph datasets with millions of nodes and billions of edges in days instead of weeks. As part of this work, LazyFox’s implementation was published and is available as a tool under an MIT licence at https://github.com/TimGarrels/LazyFox.
Genome sequencing processes are commonly followed by computational analysis in medical diagnosis. The analyses are generally performed once the sequencing process has finished. However, in time-critical applications, it is crucial to start diagnosis once sufficient evidence has been accumulated. This research aims to define a proof-of-principle for predicting earlier time for decision-making using a machine learning approach. The method is evaluated on Illumina sequencing cycles for pathogen diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.