Aims. The detection of c-C3HC2H and possible future detection of c-C3HCN provide new molecules for reaction chemistry in the dense interstellar medium (ISM) where R-C2H and R-CN species are prevalent. Determination of chemically viable c-C3HC2H and c-C3HCN derivatives and their prominent spectral features can accelerate potential astrophysical detection of this chemical family. This work characterizes three such derivatives: c-C3(C2H)2, c-C3(CN)2, and c-C3(C2H)(CN). Methods. Interstellar reaction pathways of small carbonaceous species are well replicated through quantum chemical means. Highly accurate cc-pVXZ-F12/CCSD(T)-F12 (X = D,T) calculations generate the energetics of chemical formation pathways as well as the basis for quartic force field and second-order vibrational perturbation theory rovibrational analysis of the vibrational frequencies and rotational constants of the molecules under study. Results. The formation of c-C3(C2H)2 is as thermodynamically and, likely, as stepwise favorable as the formation of c-C3HC2H, rendering its detectability to be mostly dependent on the concentrations of the reactants. Both c-C3(C2H)2 and c-C3(C2H)(CN) will be detectable through radioastronomical observation with large dipole moments of 2.84 D and 4.26 D, respectively, while c-C3(CN)2 has an exceedingly small and likely unobservable dipole moment of 0.08 D. The most intense frequency for c-C3(C2H)2 is v2 at 3316.9 cm–1 (3.01 μm), with an intensity of 140 km mol–1. The mixed-substituent molecule c-C3(C2H)(CN) has one frequency with a large intensity, v1, at 3321.0 cm–1 (3.01 μm), with an intensity of 82 km mol–1. The molecule c-C3(CN)2 lacks intense vibrational frequencies within the range that current instrumentation can readily observe. Conclusions. Both c-C3(C2H)2 and c-C3(C2H)(CN) are viable candidates for astrophysical observation, with favorable reaction profiles and spectral data produced herein, but c-C3(CN)2 will not be directly observable through any currently available remote sensing means, even if it forms in large abundances.
Nearly two decades since the detection of cyclopropenone (c-C3H2O) in the interstellar medium (ISM), the understanding of how this molecule comes to be remains incomplete. Many hypotheses place the ubiquitous hydrocarbon c-C3H2 at the center of such discussions. However, insights into c-C3H2 chemistry are further complicated by the recent detection of ethynyl cyclopropenylidene (c-C3HC2H) and the observation of a radio line possibly belonging to methylenecyclopropene (c-C3H2CH2). In a necessary reconciliation of past and current work on the chemical capabilities of c-C3H2 in interstellar environments, the formation pathways of several functionalized cyclopropenes from c-C3H2 and a hydrogenated radical are explored. Chemically accurate CCSD(T)-F12/cc-pVTZ-F12 calculations are used to evaluate the energies of reaction and generate structures along the reaction pathway for formation products deemed chemically plausible. Potential energy scans are used to include or rule out certain paths to product formation based on conformation to the necessary requirements of cold interstellar chemistry. Four functionalized cyclopropenes in addition to c-C3H2O have net exothermic reactions when forming from c-C3H2 (c-C3H2CC, c-C3H2S, c-C3H2NH, c-C3H2CH2). The former three are found to have reaction profiles favorable for formation in the cold ISM, while c-C3H2CH2 can only form by passage through an association barrier that must be mitigated by an energy source of some kind. c-C3H2S and c-C3H2NH are the best candidates for new spectroscopic searches. A complete detection of c-C3H2CH2 is necessary to fully understand cyclopropenylidene chemistry in the ISM.
Five substituted cyclopropenylidene derivatives (c-C3HX, X=CN, OH, F, NH2), all currently undetected in the interstellar medium (ISM), are found herein to have mechanistically viable, gas-phase formation pathways through neutral–neutral additions of ·X onto c-C3H2. The detection and predicted formation mechanism of c-C3HC2H introduces a need for the chemistry of c-C3H2 and any possible derivatives to be more fully explored. Chemically accurate CCSD(T)-F12/cc-pVTZ-F12 calculations provide exothermicities of additions of various radical species to c-C3H2, alongside energies of submerged intermediates that are crossed to result in product formation. Of the novel reaction mechanisms proposed, the addition of the cyano radical is the most exothermic at -16.10 kcal mol−1. All five products are found to or are expected to have at least one means of associating barrierlessly to form a submerged intermediate, a requirement for the cold chemistry of the ISM. The energetically allowed additions arise as a result of the strong electrophilicity of the radical species as well as the product stability gained through substituent-ring conjugation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.