Measuring and understanding functional fetal brain development in utero is critical for the study of the developmental foundations of our cognitive abilities, possible early detection of disorders, and their prevention. Thalamocortical connections are an intricate component of shaping the cortical layout, but so far, only ex-vivo studies provide evidence of how axons enter the sub-plate and cortex during this highly dynamic phase. Evidence for normal in-utero development of the functional thalamocortical connectome in humans is missing. Here, we modeled fetal functional thalamocortical connectome development using in-utero functional magnetic resonance imaging in fetuses observed from 19th to 40th weeks of gestation (GW). We observed a peak increase of thalamocortical functional connectivity strength between 29th and 31st GW, right before axons establish synapses in the cortex. The cortico–cortical connectivity increases in a similar time window, and exhibits significant functional laterality in temporal-superior, -medial, and -inferior areas. Homologous regions exhibit overall similar mirrored connectivity profiles, but this similarity decreases during gestation giving way to a more diverse cortical interconnectedness. Our results complement the understanding of structural development of the human connectome and may serve as the basis for the investigation of disease and deviations from a normal developmental trajectory of connectivity development.
Fetal functional Magnetic Resonance Imaging (fMRI) has emerged as a powerful tool for investigating brain development in utero, holding promise for generating developmental disease biomarkers and supporting prenatal diagnosis. However, to date its clinical applications have been limited by unpredictable fetal and maternal motion during image acquisition. Even after spatial realigment, these cause spurious signal fluctuations confounding measures of functional connectivity and biasing statistical inference of relationships between connectivity and individual differences. As there is no ground truth for the brain's functional structure, especially before birth, quantifying the quality of motion correction is challenging. In this paper, we propose evaluating the efficacy of different regression based methods for removing motion artifacts after realignment by assessing the residual relationship of functional connectivity with estimated motion, and with the distance between areas. Results demonstrate the sensitivity of our evaluation's criteria to reveal the relative strengths and weaknesses among different artifact removal methods, and underscore the need for greater care when dealing with fetal motion.
Introduction:Children with attention-deficit/hyperactivity disorder (ADHD) have some impairment in emotional relationship which can be due to problems in emotional processing. The present study investigated neural correlates of early stages of emotional face processing in this group compared with typically developing children using the Gamma Band Activity (GBA).Methods:A total of 19 children diagnosed with ADHD (Combined type) based on DSM-IV classification were compared with 19 typically developing children matched on age, gender, and IQ. The participants performed an emotional face recognition while their brain activities were recorded using an event-related oscillation procedure.Results:The results indicated that ADHD children compared to normal group showed a significant reduction in the gamma band activity, which is thought to reflect early perceptual emotion discrimination for happy and angry emotions (P<0.05).Conclusion:The present study supports the notion that individuals with ADHD have some impairments in early stage of emotion processing which can cause their misinterpretation of emotional faces.
In most humans, the superior temporal sulcus (STS) shows a rightward depth asymmetry. This asymmetry can not only be observed in adults, but is already recognizable in the fetal brain. As the STS lies adjacent to brain areas important for language, STS depth asymmetry may represent an anatomical marker for language abilities. This study investigated the prognostic value of STS depth asymmetry in healthy fetuses for later language abilities, language localization, and language-related white matter tracts. Less right lateralization of the fetal STS depth was significantly associated with better verbal abilities, with fetal STS depth asymmetry explaining more than 40% of variance in verbal skills 6–13 years later. Furthermore, less right fetal STS depth asymmetry correlated with increased left language localization during childhood. We hypothesize that earlier and/or more localized fetal development of the left temporal cortex is accompanied by an earlier development of the left STS and is favorable for early language learning. If the findings of this pilot study hold true in larger samples of healthy children and in different clinical populations, fetal STS asymmetry has the potential to become a diagnostic biomarker of the maturity and integrity of neural correlates of language.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.