Carbon-based transition metal (TM) single-atom catalysts (SACs) have shown a great potential toward electrochemical water splitting and H2 production. Given that two-dimensional (2D) materials are widely exploited for sustainable energy...
Antibiotic resistance genes (ARGs) have been reported to threaten the public health of beachgoers worldwide. Although ARG monitoring and beach guidelines are necessary, substantial efforts are required for ARG sampling and analysis. Accordingly, in this study, we predicted ARGs occurrence that are primarily found on the coast after rainfall using a conventional long short-term memory (LSTM), LSTMconvolutional neural network (CNN) hybrid model, and input attention (IA)-LSTM. To develop the models, 10 categories of environmental data collected at 30-min intervals and concentration data of 4 types of major ARGs (i.e., aac(6 -Ib-cr ), bla TEM , sul 1, and tet X) obtained at the Gwangalli Beach in South Korea, between 2018 and 2019 were used. When individually predicting ARGs occurrence, the conventional L STM and IA-L STM exhibited poor R 2 values during training and testing. In contrast, the LSTM-CNN exhibited a 2-6-times improvement in accuracy over those of the conventional L STM and IA-L STM. However, when predicting all ARGs occurrence simultaneously, the IA-LSTM model exhibited a superior performance overall compared to that of LSTM-CNN. Additionally, the influence of environmental variables on prediction was investigated using the IA-LSTM model, and the ranges of input variables that affect each ARG were identified. Consequently, this study demonstrated the possibility of predicting the occurrence and distribution of major ARGs at the beach based on various environmental variables, and the results are expected to contribute to management of ARG occurrence at a recreational beach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.