Training future leaders to understand life cycle assessment data is critical for effective research, business, and sociopolitical decision-making. However, the technical nature of these life cycle reports often makes them challenging for students and other nonexperts to comprehend. Therefore, we outline here the key takeaways from recent economic and life cycle assessments for three major commodity chemicalsethylene, ethylene oxide, and terephthalic acidthat are precursors for plastics, synthetic fibers, and many other consumer products. The five lessons and 10 discussion prompts (provided in the Supporting Information) serve as useful teaching tools for introductory chemistry and chemical engineering courses.
Vaccines provide effective protection against many infectious diseases as well as therapeutics for select pathologies, such as cancer. Many viral vaccines require amplification of virus in cell cultures during manufacture. Traditionally, cell cultures, such as VERO, have been used for virus production in bovine serum-containing culture media. However, due to concerns of potential adventitious agents present in fetal bovine serum (FBS), regulatory agencies suggest avoiding the use of bovine serum in vaccine production. Current serum-free media suitable for VERO-based virus production contains high concentrations of undefined plant hydrolysates. Although these media have been extensively used, the lack of chemical definition has the potential to adversely affect cell growth kinetics and subsequent virus production. As plant hydrolysates are made from plant raw materials, performance variations could be significant among different lots of production. We developed a chemically defined, serum-free medium, OptiVERO, which was optimized specifically for VERO cells. VERO cell growth kinetics were demonstrated to be equivalent to EMEM-10% FBS in this chemically defined medium while the plant hydrolysatecontaining medium demonstrated a slower doubling time in both two-dimensional (2D) and 3D cultures. Virus production comparisons demonstrated that the chemically defined OptiVERO medium performed at least as good as the EMEM-10% FBS and better than the plant hydrolysate-containing media. We report the success in using recombinant proteins to replace undefined plant hydrolysates to formulate a chemically defined medium that can efficiently support VERO cell expansion and virus production. K E Y W O R D S plant-derived hydrolysate, recombinant albumin, recombinant transferrin, serum-free culture medium, VERO cells 1 | INTRODUCTION Vaccines currently represent a versatile class of prophylactics in the defense of major infectious disease as well as novel class of therapeutics for serious conditions such as cancer (Ong, Tan, & Ho, 2017). Manufacturing of both live-attenuated viral vaccine and inactivated vaccine made from inactivation of live virus requires production of a large amount of viruses from host cells. Recent years
Vaccines provide effective protection against many infectious diseases as well as therapeutics for some serious diseases, such as cancer. Many viral vaccines require amplification of virus in cell cultures during manufacture. Traditionally, cell cultures, such as VERO, have been used for virus production in bovine serum-containing culture media. However, due to concerns of potential adventitious agents present in fetal bovine serum (FBS), regulatory agencies suggest avoiding the use of bovine serum in vaccine production. Current serum-free media suitable for VERO-based virus production contains high concentrations of undefined plant hydrolysates. Although these media have been extensively used, the lack of chemical definition has potential to adversely affect cell growth kinetics and subsequent virus production. As plant hydrolysates are made from plant raw materials, performance variations could be significant among different lots of production. We developed a chemically defined, serumfree medium, OptiVERO, that was optimized specifically for VERO cells. VERO cell growth kinetics were demonstrated to be equivalent to EMEM-10% FBS in this chemically defined medium while the plant hydrolysate-containing medium demonstrated a higher doubling time in both 2D and 3D cultures. Virus production comparisons demonstrated that the chemically defined OptiVERO medium performed at least as good as the EMEM-10%FBS and better than the plant hydrolysate-containing media. We report the success in using recombinant proteins to replace undefined plant hydrolysates to formulate a chemically defined medium that can efficiently support VERO cell expansion and virus production.
Hosted fileOptiVERO Manuscript FINAL Biotechnology and Bioengineering.pdf available at https://authorea. com/users/307773/articles/438742-formulation-and-production-of-a-blood-free-and-chemicallydefined-virus-production-media-for-vero-cells
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.