The Arabidopsis Information Resource (TAIR, http://arabidopsis.org) is a genome database for Arabidopsis thaliana, an important reference organism for many fundamental aspects of biology as well as basic and applied plant biology research. TAIR serves as a central access point for Arabidopsis data, annotates gene function and expression patterns using controlled vocabulary terms, and maintains and updates the A. thaliana genome assembly and annotation. TAIR also provides researchers with an extensive set of visualization and analysis tools. Recent developments include several new genome releases (TAIR8, TAIR9 and TAIR10) in which the A. thaliana assembly was updated, pseudogenes and transposon genes were re-annotated, and new data from proteomics and next generation transcriptome sequencing were incorporated into gene models and splice variants. Other highlights include progress on functional annotation of the genome and the release of several new tools including Textpresso for Arabidopsis which provides the capability to carry out full text searches on a large body of research literature.
Plants sense phosphate (Pi) deficiency and initiate signaling that controls adaptive responses necessary for Pi acquisition. Herein, evidence establishes that AtSIZ1 is a plant small ubiquitin-like modifier (SUMO) E3 ligase and is a focal controller of Pi starvation-dependent responses. T-DNA insertional mutated alleles of AtSIZ1 (At5g60410) cause Arabidopsis to exhibit exaggerated prototypical Pi starvation responses, including cessation of primary root growth, extensive lateral root and root hair development, increase in root/shoot mass ratio, and greater anthocyanin accumulation, even though intracellular Pi levels in siz1 plants were similar to wild type. AtSIZ1 has SUMO E3 ligase activity in vitro, and immunoblot analysis revealed that the protein sumoylation profile is impaired in siz1 plants. AtSIZ1-GFP was localized to nuclear foci. Steadystate transcript abundances of Pi starvation-responsive genes AtPT2, AtPS2, and AtPS3 were moderate but clearly greater in siz1 seedlings than in wild type, where Pi is sufficient. Pi starvation induced the expression of these genes to the same extent in siz1 and wild-type seedlings. However, two other Pi starvation-responsive genes, AtIPS1 and AtRNS1, are induced more slowly in siz1 seedlings by Pi limitation. PHR1, a MYB transcriptional activator of AtIPS1 and AtRNS1, is an AtSIZ1 sumoylation target. These results indicate that AtSIZ1 is a SUMO E3 ligase and that sumoylation is a control mechanism that acts both negatively and positively on different Pi deficiency responses
Phosphate (Pi) is considered to be one of the least available plant nutrients in the soil. High-affinity Pi transporters are generally accepted as entry points for Pi in the roots. The physiological, genetic, molecular and biochemical analysis of phosphate starvation response mechanisms highlight the ability of plants to adapt and thrive under phosphate limiting conditions. These responses help them enhance the availability of Pi, increase its uptake and improve the use-efficiency of Pi within a plant. Enhanced ability to acquire Pi appears to be regulated at the level of transcription of high-affinity phosphate transporters. These transporters are encoded by a family of small number of genes having characteristic tissue and organ associated expression patterns. Many of them are strongly induced during phosphate deficiency thus providing plants with enhanced ability to acquire and transfer phosphate. In addition, plants also activate biochemical mechanisms that could lead to increased acquisition of phosphate from both inorganic and organic phosphorus sources in the soil. Furthermore, altered root morphology and mycorrhizal symbiosis further enhance the ability of plants to acquire Pi. Interestingly most of these responses appear to be coordinated by changes in cellular phosphate levels. It is becoming apparent that phosphate acquisition and utilization are associated with activation or inactivation of a host of genes in plants. In this article we describe molecular, biochemical and physiological factors associated with phosphate acquisition by plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.