For the sake of enhancing the exploitation of the permanently allocated, but potentially under-utilized spectral resources, sharing the frequency bands between radar and communication systems has attracted substantial attention. More explicitly, there is increasing demand for sharing both the frequency band and the hardware platform between these two functionalities, but naturally, its success critically hinges on highquality joint sensing and communications. In this paper, we firstly overview the application scenarios and the research progress in the area of communication and radar spectrum sharing, with particular emphasis on: 1) Radar-communication coexistence; 2) Dual-functional radar-communication (DFRC) systems. In the remainder of the paper, we propose a novel transceiver architecture and frame structure for a DFRC base station (BS) operating in the millimeter wave (mmWave) band, using the hybrid analog-digital (HAD) beamforming technique. We assume that the BS is serving a multi-antenna aided user equipment (UE) operating in a mmWave channel, which in the meantime actively detects multiple targets. Note that part of the targets also play the role of scatterers for the communication signal. Given this framework, we then propose a novel scheme for joint target search and communication channel estimation relying on the omni-directional pilot signals generated by the HAD structure. Given a fully-digital communication precoder and a desired radar transmit beampattern, we propose to design the analog and digital precoders under non-convex constant-modulus (CM) and power constraints, such that the BS can formulate narrow beams towards all the targets, while pre-equalizing the impact of the communication channel. Furthermore, we design an HAD receiver that can simultaneously process signals from the UE and echo waves from the targets. By tracking the angular variation of the targets, we show that it is possible to recover the target echoes and mitigate the potential interference imposed on the UE signals by invoking the successive interference cancellation (SIC) technique, even when the radar and communication signals share the equivalent signal-to-noise ratio (SNR). The feasibility and the efficiency of the proposed approaches in realizing DFRC are verified via numerical simulations. Finally, our discussions are summarized by overviewing the open problems in the research field of CRSS.
We focus on a dual-functional multi-input-multioutput (MIMO) radar-communication (RadCom) system, where a single transmitter with multiple antennas communicates with downlink cellular users and detects radar targets simultaneously. Several design criteria are considered for minimizing the downlink multiuser interference. First, we consider both omnidirectional and directional beampattern design problems, where the closedform globally optimal solutions are obtained. Based on the derived waveforms, we further consider weighted optimizations targeting a flexible tradeoff between radar and communications performance and introduce low-complexity algorithms. Moreover, to address the more practical constant modulus waveform design problem, we propose a branch-and-bound algorithm that obtains a globally optimal solution, and derive its worst-case complexity as function of the maximum iteration number. Finally, we assess the effectiveness of the proposed waveform design approaches via numerical results.
Abstract-This paper studies secrecy rate optimization in a wireless network with a single-antenna source, a multi-antenna destination and a multi-antenna eavesdropper. This is an unfavorable scenario for secrecy performance as the system is interference-limited. In the literature, assuming that the receiver operates in half duplex (HD) mode, the aforementioned problem has been addressed via use of cooperating nodes who act as jammers to confound the eavesdropper. This paper investigates an alternative solution, which assumes the availability of a full duplex (FD) receiver. In particular, while receiving data, the receiver transmits jamming noise to degrade the eavesdropper channel. The proposed self-protection scheme eliminates the need for external helpers and provides system robustness. For the case in which global channel state information is available, we aim to design the optimal jamming covariance matrix that maximizes the secrecy rate and mitigates loop interference associated with the FD operation. We consider both fixed and optimal linear receiver design at the destination, and show that the optimal jamming covariance matrix is rank-1, and can be found via an efficient 1-D search. For the case in which only statistical information on the eavesdropper channel is available, the optimal power allocation is studied in terms of ergodic and outage secrecy rates. Simulation results verify the analysis and demonstrate substantial performance gain over conventional HD operation at the destination.
Abstract1 We consider a cooperative wireless network in the presence of one of more eavesdroppers, and exploit node cooperation for achieving physical (PHY) layer based security. Two different cooperation schemes are considered. In the first scheme, cooperating nodes retransmit a weighted version of the source signal in a decode-and-forward (DF) fashion. In the second scheme, while the source is transmitting, cooperating nodes transmit weighted noise to confound the eavesdropper (cooperative jamming (CJ)).We investigate two objectives, i.e., maximization of achievable secrecy rate subject to a total power constraint, and minimization of total power transmit power under a secrecy rate constraint. For the first design objective with a single eavesdropper we obtain expressions for optimal weights under the DF protocol in closed form, and give an algorithm that converges to the optimal solution for the CJ scheme; while for multiple eavesdroppers we give an algorithm for the solution using the DF protocol that is guaranteed to converge to the optimal solution for two eavesdroppers. For the second design objective, existing works introduced additional constraints in order to reduce the degree of difficulty, thus resulting in suboptimal solutions. In this work, either a closed form solution is obtained, or algorithms to search for the solution are proposed. Numerical results are presented to illustrate the proposed schemes and demonstrate the advantages of cooperation as compared to direct transmission. Index TermsSecrecy rate, node cooperation, physical layer based security, semi-definite programming.
Beamforming is an effective means to improve the quality of the received signals in multiuser multiple-input-singleoutput (MISO) systems. This paper studies fast optimal downlink beamforming strategies by leveraging the powerful deep learning techniques. Traditionally, finding the optimal beamforming solution relies on iterative algorithms which leads to high computational delay and is thus not suitable for real-time implementation. In this paper, we propose a deep learning framework for the optimization of downlink beamforming. In particular, the solution is obtained based on convolutional neural networks and exploitation of expert knowledge, such as the uplink-downlink duality and the structure of known optimal solutions. Using this framework, we construct three beamforming neural networks (BNNs) for three typical optimization problems, i.e., the signalto-interference-plus-noise ratio (SINR) balancing problem, the power minimization problem and the sum rate maximization problem. The BNNs for the former two problems adopt the supervised learning approach, while the BNN for the sum rate maximization problem employs a hybrid method of supervised and unsupervised learning to improve the performance beyond the state of the art. Simulation results show that with much reduced computational complexity, the BNNs can achieve nearoptimal solutions to the SINR balancing and power minimization problems, and outperform the existing algorithms that maximize the sum rate. In summary, this work paves the way for fast realization of the optimal beamforming in multiuser MISO systems.Index Terms-Deep learning, beamforming, MISO, beamforming neural network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.