Real-world sequential decision-making tasks are generally complex, requiring trade-offs between multiple, often conflicting, objectives. Despite this, the majority of research in reinforcement learning and decision-theoretic planning either assumes only a single objective, or that multiple objectives can be adequately handled via a simple linear combination. Such approaches may oversimplify the underlying problem and hence produce suboptimal results. This paper serves as a guide to the application of multi-objective methods to difficult problems, and is aimed at researchers who are already familiar with single-objective reinforcement learning and planning methods who wish to adopt a multi-objective perspective on their research, as well as practitioners who encounter multi-objective decision problems in practice. It identifies the factors that may influence the nature of the desired solution, and illustrates by example how these influence the design of multi-objective decision-making systems for complex problems.
Online reviews have become a vital source of information in purchasing a service (product). Opinion spammers manipulate reviews, affecting the overall perception of the service. A key challenge in detecting opinion spam is obtaining ground truth. Though there exists a large set of reviews online, only a few of them have been labeled spam or nonspam. In this paper, we propose spamGAN, a generative adversarial network which relies on limited set of labeled data as well as unlabeled data for opinion spam detection. spamGAN improves the state-of-the-art GAN based techniques for text classification. Experiments on TripAdvisor dataset show that spamGAN outperforms existing spam detection techniques when limited labeled data is used. Apart from detecting spam reviews, spamGAN can also generate reviews with reasonable perplexity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.