An anatomical technique based on the retrograde transport of horseradish peroxidase (HRP) was used to investigate the projections of spinal cord neurons to the mesencephalic tegmentum in the rat. Restricted unilateral injections were confined to central grey, cuneiformis areas, and superior colliculus. Injections into all these loci produced labeling in similar spinal areas. Only quantitative differences were noted. In the spinal grey matter, numerous labeled cells were regularly encountered in the marginal zone, the lateral part of the neck of the dorsal horn, and the dorsal grey commissure. Projections from the marginal zone and neck of the dorsal horn were predominantly contralateral. In the white matter, a pronounced bilateral labeling was observed in the nucleus of the dorsolateral funiculus, thus confirming our previous electrophysiological findings (Menétrey et al., '80). This distribution of labeled cells was commonly observed throughout the whole length of the cord. Additional sites of projecting cells have also been identified at the most rostral levels (obex, C1, C2). They mostly derived from spinal extensions of the dorsal column nuclei and lateral cervical nucleus contralaterally; from the lateral ventral horns bilaterally and from the nucleus commissuralis ipsilaterally. This study is thus a clear confirmation that the mesencephalic tegmentum constitutes a target for various somatosensory inputs originating from spinal cord, dorsal column nuclei, and lateral cervical nucleus. Moreover, from these results together with those obtained for the spinothalamic tract in the rat, it appears that marginal and dorsolateral funiculus neurons preferentially project to the mesencephalic tegmentum. The importance of marginal zone projections underlines the involvement of the spinomesencephalic tract in pain mechanisms.
1. Spinoreticular tract neurons at the rat lumbar cord level were identified by antidromic activation following stimulation at mainly pontine and mesencephalic levels. These units, which were found in the dorsal half of the cord, could be separated into two groups according to their spinal location, electrophysiological properties, and their central projections. 2. Units in the dorsolateral funiculus nucleus projected mainly to the cuneiformis area and adjacent structures with frequent bilateral projections. They had the slowest conduction velocities, sometimes in the unmyelinated range. Generally, they were driven only by stimulation of subcutaneous and/or deep structures. 3. Neurons located in the dorsal horn mainly projected contralaterally to pontine and mesencephalic levels. their conduction velocities and the electrophysiological properties were identical to those observed for the rat spinothalamic tract (22). Almost all (86%) had clear cutaneous sensitivity and generally large receptive fields: 40% responded to nonnoxious and noxious mechanical cutaneous stimuli and frequently to noxious radiant heat, 26% were exclusively excited by light tactile stimuli, and 20% required noxious cutaneous mechanical stimulation for activation. There was a good correlation between responses to natural and transcutaneous electrical stimulation: units driven by noxious mechanical stimuli received A-delta- and/or C-fiber inputs. The remaining units (14%) had more complex receptive fields associated with both excitatory and inhibitory inputs originating from a single peripheral area. 4. The functional heterogeneity of the rat spinoreticular tract is reminiscent of that demonstrated for the rat and monkey spinothalamic tracts. Similarly, the rat spinoreticular neurons are under the influence of descending inhibitory controls originating from the nucleus raphe magnus and bulbar reticular formation. 5. Responses of the rat spinoreticular tract neurons are consistent with the involvement of this pathway in the transmission of messages of both innocuous and noxious origins.
(1) Lumbar dorsal horn units characterized by their mechanical cutaneous sensitivities were tested for their responses to temperature changes of the skin in the decerebrate spinal rats. (a) Class 1 units (i.e. driven by non-noxious mechanical stimuli) were rarely thermally sensitive. (b) Nearly all class 2 units (i.e. driven by both non-noxious and noxious mechanical stimuli) and 4 of the 5 class 3 units (i.e. driven by noxious mechanical stimuli) were sensitive to temperature changes. (2) According to their thermal response threshold and their response range, these units were divided into 3 groups. (a) Warming units whose response threshold and maximum response were below 42.5 degrees C. Such units were rarely encountered. (b) Warming/noxious heat units whose response threshold was below 42.5 degrees C but with a maximum response above this temperature. They represented approximatively one-third of the radiant heat-sensitive units. (c) Noxious heat units whose response threshold was above 42.5 degrees C and maximum discharge several degrees above it. Approximately 50% of units activated by radiant heat belonged to this group. (3) Responses to radiant heat stimulation were frequently affected by a first noxious heat application. It consisted: --in a threshold decrease and/or an increase of their cellular discharge for a same temperature range. Only observed for warming/noxious heat units and noxious heat units, this sensitization phenomenon predminantly affected noxious heat units. --in a decrease of cellular discharge for a same temperature range. This desensitization phenomenon was observed for the 3 groups of units driven by radiant heat but mainly for warming units. (4) Supramaximal transcutaneous electrical stimulation revealed that nearly all the thermally sensitive units received A delta and/or C inputs. These units were largely distributed throughout the dorsal horn (laminae I, IV and V). Ten of the 12 lamina I units responded to noxious thermal stimuli. (5) These data indicate that an increase in skin temperature is coded at the level of the rat spinal cord dorsal horn by both an increase in discharge of low threshold temperature sensitive units and a progressive recruitment of high threshold units.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.