Quantifying the mass balance of the Antarctic Ice Sheet (AIS), and the resulting sea level rise, requires an understanding of inter-annual variability and associated causal mechanisms. Very few studies have been exploring the influence of climate anomalies on the AIS and only a vague estimate of its impact is available. Changes to the ice sheet are quantified using observations from space-borne altimetry and gravimetry missions. We use data from Envisat (2002 to 2010) and Gravity Recovery And Climate Experiment (GRACE) (2002 to 2016) missions to estimate monthly elevation changes and mass changes, respectively. Similar estimates of the changes are made using weather variables (surface mass balance (SMB) and temperature) from a regional climate model (RACMO2.3p2) as inputs to a firn compaction (FC) model. Elevation changes estimated from different techniques are in good agreement with each other across the AIS especially in West Antarctica, Antarctic Peninsula, and along the coasts of East Antarctica. Inter-annual height change patterns are then extracted using for the first time an empirical mode decomposition followed by a principal component analysis to investigate for influences of climate anomalies on the AIS. Investigating the inter-annual signals in these regions revealed a sub-4-year periodic signal in the height change patterns. El Niño Southern Oscillation (ENSO) is a climate anomaly that alters, among other parameters, moisture transport, sea surface temperature, precipitation, in and around the AIS at similar frequency by alternating between warm and cold conditions. This periodic behavior in the height change patterns is altered in the Antarctic Pacific (AP) sector, possibly by the influence of multiple climate drivers, like the Amundsen Sea Low (ASL) and the Southern Annular Mode (SAM). Height change anomaly also appears to traverse eastwards from Coats Land to Pine Island Glacier (PIG) regions passing through Dronning Maud Land (DML) and Wilkes Land (WL) in 6 to 8 years. This is indicative of climate anomaly traversal due to the Antarctic Circumpolar Wave (ACW). Altogether, inter-annual variability in the SMB of the AIS is found to be modulated by multiple competing climate anomalies.
<p>Precisely quantifying the Antarctic Ice Sheet (AIS) mass balance remains a challenge as several processes compete at differing degrees in the basin-scale with regional variations. Understanding of changes in AIS has been largely based on observations from various altimetry missions and Gravity Recovery And Climate Experiment (GRACE) missions due to its scale and coverage. Analysis of linear trends in surface height variations of AIS since the early 1990s showed multiple variabilities in the rate of changes over the period of time. These observations are a reflection of various underlying ice sheet processes. Therefore understanding the processes that interact on the ice sheet is important to precisely determine the response of the ice sheet to a rapidly changing climate.</p><p>Changing climate constitutes variations in major short term processes including snow accumulation and surface melting. Variations in accumulation rate and temperature at the ice sheet surface cause changes in the firn compaction (FC) rate. Variations in the FC rate change the AIS thickness, that should be detected from altimetry, but do not change its mass, as observed by the GRACE mission. We focus our study on the seasonal and interannual changes in the elevation and mass of the AIS. We use surface elevation changes from Envisat data and gravity changes derived from the latest GRACE solutions between 10/2002 and 10/2010. As mass changes observed using the GRACE mission is strongly impacted by long term isostasy, as it involves mantle mass redistribution, we remove from all dataset an 8-year trend. We use weather variable historical data solutions including surface mass balance, temperature and wind velocities from the regional climate model RACMO2.3p2 as input to an FC model to estimate AIS elevation changes. We obtain a very good correlation between height change estimates from GRACE, Envisat and RACMO2.3p2 at several places such as along the coast of Dronning Maud Land, Wilkes land and Amundsen sea sector. Considerable differences in Oates and Mac Robertson regions, with a strong seasonal signal in Envisat estimates, reflect spatial variability in physical parameters of the surface of the AIS due to climate parameter changes such as winds.</p>
<p>Nominal mass change patterns of the Antarctic Ice Sheet (AIS) are usually altered by climate anomalies. By alternating warm and cold conditions, El Ni&#241;o Southern Oscillation (ENSO) alters moisture transport, sea surface temperature, precipitation, etc in and around the AIS and potentially produces such anomalies. Indices like the Southern Oscillation Index (SOI) and the Oceanic Ni&#241;o Index (ONI) robustly represent the ENSO phenomenon and is used to evaluate the characteristics of an El Ni&#241;o or a La Ni&#241;a. Very few studies have taken place exploring the influence of climate anomalies on the AIS and only a vague estimate of its impact is available.</p><p>Changes to the ice sheet are quantified using observations from space-borne altimetric and gravimetric missions. We use data from missions like Envisat (2002 to 2010) and Gravity Recovery And Climate Experiment (GRACE) (2002 to 2016) to estimate monthly elevation changes and mass changes respectively. Similar estimates of the changes are made using weather variables (surface mass balance (SMB) and temperature) from a regional climate model (RACMO2.3p2) combined with a firn compaction (FC) model. Inter-annual height change patterns are then extracted using empirical mode decomposition and principal component analysis to investigate a possible influence of climate anomalies on the AIS.</p><p>Elevation changes estimated from different techniques are in good agreement with each other across AIS especially in West Antarctica, Antarctic Peninsula, and along the coasts of East Antarctica. Investigating the inter-annual signals in these regions revealed a sub-4-year periodic signal in the height change patterns. This periodic behavior in the height change patterns is altered in the Antarctic Pacific (AP) sector possibly by the influence of multiple climate drivers like the Amundsen Sea Low (ASL) and the Southern Annular Mode (SAM). Height change anomaly also appears to traverse eastwards from Coats Land to Pine Island Glacier (PIG) regions passing through Dronning Maud Land (DML) &#160;and Wilkes Land (WL) in 7 to 8 years. This is indicative of climate anomaly traversal due to the Antarctic Circumpolar Wave (ACW). Altogether, variability in the SMB of the AIS is found to be modulated by multiple climate anomalies.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.