Heats of adsorption and adsorption isotherms of argon, nitrogen and methane on a perfect graphitic surface and a defective graphitic surface are studied with a Grand Canonical Monte Carlo Simulation (GCMC). For the perfect surface, the isosteric heat versus loading shows a typical pattern of adsorption of simple fluids on graphite. Depending on adsorbate, degree of graphitization and temperature, a spike in the heat curve versus loading is observed when the first layer is mostly covered with adsorbate molecules. The heat spike is observed for argon and nitrogen at 77 K while for argon at 87.3 K it is no longer present. These simulation results are consistent with the experimental data of J. Rouquerol, S. Partyka and F. Rouquerol, J. Chem. Soc., Faraday Trans. 1, 1977, 73, 306. In the case of methane we observe heat spikes at low temperatures, 84.5, 92.5 and 104 K. The heat spike shifts to higher loading with temperature and it then disappears at high temperatures. These observations are in qualitative agreement with the experimental data of A. Inaba, Y. Koga and J. A. Morrison, J. Chem. Soc., Faraday Trans. 2, 1986, 82, 1635. In all cases where heat spikes are observed, the GCMC simulation results indicate that the heat spike is associated with the squeezing of molecules into the already dense first layer, and the rearrangement of molecules to form a highly structured fluid of this layer. While this squeezing into the first layer is happening, molecules continue to adsorb onto the relatively sparse second layer.
The Henry constant and the isosteric heat of adsorption at zero loading in a carbon nanotube bundle are studied with Monte Carlo integration for the adsorption of gases over a range of temperatures. The spacing between nanotubes in a bundle is determined from the minimization of potential energy of interaction between these tubes. We study different tube configurations with bundles of 2, 3, 4 and 7 tubes. Depending on the configuration it is found that the spacing is of between 0.31 to 0.333 nm, and this falls within the range reported in the literature. The Henry constant has been carefully defined so that it will not become negative at high temperatures. This is done with the aid of accessible volume, rather than the usual absolute void volume. We show that linearity of the van't Hoff plot for the Henry constant is not strictly followed. Furthermore the slope of this plot is not equal to the isosteric heat of adsorption at zero loading, which is found to be a strong function of temperature. From the results we find that the Henry constant and the heat of adsorption depend on the tube configuration. In general the adsorption in the cusp interstices is strongest followed by that inside the tube and finally on the outer surface. However for very small tubes adsorption occurs inside the tube first. For molecules with orientation, the behaviour is even more interesting and the shape of the isosteric heat versus temperature depends on the degree of orientation, tube configuration and the domain of adsorption (interstices, inside the tube and on the outer surface).
ABSTRACT:The adsorption of simple Lennard-Jones fluids in a carbon slit pore of finite length was studied with Canonical Ensemble (NVT) and Gibbs Ensemble Monte Carlo Simulations (GEMC). The Canonical Ensemble was a collection of cubic simulation boxes in which a finite pore resides, while the Gibbs Ensemble was that of the pore space of the finite pore. Argon was used as a model for Lennard-Jones fluids, while the adsorbent was modelled as a finite carbon slit pore whose two walls were composed of three graphene layers with carbon atoms arranged in a hexagonal pattern. The Lennard-Jones (LJ) 12-6 potential model was used to compute the interaction energy between two fluid particles, and also between a fluid particle and a carbon atom.Argon adsorption isotherms were obtained at 87.3 K for pore widths of 1.0, 1.5 and 2.0 nm using both Canonical and Gibbs Ensembles. These results were compared with isotherms obtained with corresponding infinite pores using Grand Canonical Ensembles. The effects of the number of cycles necessary to reach equilibrium, the initial allocation of particles, the displacement step and the simulation box size were particularly investigated in the Monte Carlo simulation with Canonical Ensembles. Of these parameters, the displacement step had the most significant effect on the performance of the Monte Carlo simulation. The simulation box size was also important, especially at low pressures at which the size must be sufficiently large to have a statistically acceptable number of particles in the bulk phase. Finally, it was found that the Canonical Ensemble and the Gibbs Ensemble both yielded the same isotherm (within statistical error); however, the computation time for GEMC was shorter than that for canonical ensemble simulation. However, the latter method described the proper interface between the reservoir and the adsorbed phase (and hence the meniscus).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.