We present a genetic algorithm for the multiple-choice integer program that finds an optimal solution with probability one (though it is typically used as a heuristic). General constraints are relaxed by a nonlinear penalty function for which the corresponding dual problem has weak and strong duality. The relaxed problem is attacked by a genetic algorithm with solution representation special to the multiple-choice structure. Nontraditional reproduction, crossover and mutation operations are employed. Extensive computational tests for dual degenerate problem instances show that suboptimal solutions can be obtained with the genetic algorithm within running times that are shorter than those of the OSL optimization routine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.