Objective To develop a collision engine (haptic force feedback simulator) compatible with a 5-degrees-of-freedom (DOF) haptic wand. This has broad applications such as for telerobotic ultrasound systems. Integrating force feedback into systems is critical to optimize remote scanning. A collision engine compatible with a 5-DOF haptic wand was developed based on the Gilbert–Johnson–Keerthi algorithm. The collision engine calculated force during collision between the wand and a virtual object based on code developed using MATLAB. A proportional force was subsequently returned to a user via the haptic wand, thereby simulating the collision force for the user. Three experiments were conducted to assess the accuracy of the collision engine on curved and flat surfaces. Results The average errors in calculation of distances between the wand and virtual object were 2.1 cm, 3.4 cm, and 4.2 cm for the model of the human hand, cylinder, and cuboid, respectively. The collision engine accurately simulated forces on a flat surface, though was less accurate on curved surfaces. Future work will incorporate haptic force feedback into a telerobotic ultrasound system. The haptic force simulator presented here may also be used in the development of ultrasound simulators for training and education.
Objective To develop a collision engine (haptic force feedback simulator) compatible with a 5-degrees-of-freedom (DOF) haptic wand. This has broad applications such as telerobotic ultrasound systems. Integrating force feedback into systems is critical to optimize remote scanning. A collision engine compatible with a 5-DOF haptic wand was developed based on the Gilbert–Johnson–Keerthi algorithm. The collision engine calculated force during collision between the wand and a virtual object based on code developed using MATLAB. A proportional force was subsequently returned to a user via the haptic wand, thereby simulating the collision force for the user. Three experiments were conducted to assess the accuracy of the collision engine on curved and flat surfaces. Results The average errors in calculation of distances between the wand and virtual object were 2.1 cm, 3.4 cm, and 4.2 cm for the model of the human hand, cylinder, and cuboid, respectively. The collision engine accurately simulated forces on a flat surface, though was less accurate on curved surfaces. Future work will incorporate haptic force feedback into a telerobotic ultrasound system. The haptic force simulator presented here may also be used in the development of ultrasound simulators for training and education.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.