In cognitive radio communication, spectrum sensing plays a vital role in sensing the existence of the primary user (PU). The sensing performance is badly affected by fading and shadowing in case of single secondary user(SU). To overcome this issue, cooperative spectrum sensing (CSS) is proposed. Although the reliability of the system is improved with cooperation but existence of malicious user (MU) in the CSS deteriorates the performance. In this work, we consider the Kullback-Leibler (KL) divergence method for minimizing spectrum sensing data falsification (SSDF) attack. In the proposed CSS scheme, each SU reports the fusion center(FC) about the availability of PU and also keeps the same evidence in its local database. Based on the KL divergence value, if the FC acknowledges the user as normal, then the user will send unified energy information to the FC based on its current and previous sensed results. This method keeps the probability of detection high and energy optimum, thus providing an improvement in performance of the system. Simulation results show that the proposed KL divergence method has performed better than the existing equal gain combination (EGC), maximum gain combination (MGC) and simple KL divergence schemes in the presence of MUs.
Abstract:In orthogonal frequency division multiplexing (OFDM), sidelobes of the modulated subcarriers cause high out-of-band (OOB) radiation, resulting in interference to licensed and un-licensed users in a cognitive radio system environment. In this work, we present a novel technique based on a generalized sidelobe canceller (GSC) for the reduction of sidelobes. The upper branch of the GSC consists of a weight vector designed by multiple constraints to preserve the desired portion of the input signal. The lower branch has a blocking matrix that blocks the desired portion and preserves the undesired portion (the sidelobes) of the input signal, followed by an adaptive weight vector. The adaptive weight vector adjusts the amplitudes of the undesired portion (the sidelobes) so that when the signal from the lower branch is subtracted from the signal from the upper branch, it results in cancellation of the sidelobes of the input signal. The effectiveness and strength of the proposed technique are verified through extensive simulations. The proposed technique produces competitive results in terms of sidelobe reduction as compared to existing techniques.
OPEN ACCESSAppl. Sci. 2015, 5 895
In cognitive radio network (CRN), secondary users (SUs) try to sense and utilize the vacant spectrum of the legitimate primary user (PU) in an efficient manner. The process of cooperation among SUs makes the sensing more authentic with minimum disturbance to the PU in achieving maximum utilization of the vacant spectrum. One problem in cooperative spectrum sensing (CSS) is the occurrence of malicious users (MUs) sending false data to the fusion center (FC). In this paper, the FC takes a global decision based on the hard binary decisions received from all SUs. Genetic algorithm (GA) using one-to-many neighbor distance along with z-score as a fitness function is used for the identification of accurate sensing information in the presence of MUs. The proposed scheme is able to avoid the effect of MUs in CSS without identification of MUs. Four types of abnormal SUs, opposite malicious user (OMU), random opposite malicious user (ROMU), always yes malicious user (AYMU), and always no malicious user (ANMU), are discussed in this paper. Simulation results show that the proposed hard fusion scheme has surpassed the existing hard fusion scheme, equal gain combination (EGC), and maximum gain combination (MGC) schemes by employing GA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.