The preliminary design for the Open Prototype for Educational NanoSats (OPEN) demonstration spacecraft, OpenOrbiter, is presented. OPEN is designed to facilitate the formation of CubeSat development programs nationally and worldwide via providing a publically-available set of spacecraft design documents, implementation and testing plans. These documents should allow the creation of a 1-U CubeSat with a parts budget of approximately $ 5,000. This allows spacecraft development to be incorporated in regular curriculum and supported from teaching (as opposed to research) funds. The OPEN design, implemented by OpenOrbiter, has an innovative internal structure, separates payload and operations processing and includes features to ease and highlight errors in integration
Imagery-based 3D scanning can be performed by scanners with multiple form factors, ranging from small and inexpensive scanners requiring manual movement around a stationary object to large freestanding (nearly) instantaneous units. Small mobile units are problematic for use in scanning living creatures, which may be unwilling or unable to (or for the very young and animals, unaware of the need to) hold a fixed position for an extended period of time. Alternately, very high cost scanners that can capture a complete scan within a few seconds are available, but they are cost prohibitive for some applications. This paper seeks to assess the performance of a large, low-cost 3D scanner, presented in prior work, which is able to concurrently capture imagery from all around an object. It provides the capabilities of the large, freestanding units at a price point akin to the smaller, mobile ones. This allows access to 3D scanning technology (particularly for applications requiring instantaneous imaging) at a lower cost. Problematically, prior analysis of the scanner's performance was extremely limited. This paper characterizes the efficacy of the scanner for scanning both inanimate objects and humans. Given the importance of lighting to visible light scanning systems, the scanner's performance under multiple lighting configurations is evaluated, characterizing its sensitivity to lighting design.
OPEN ACCESSTechnologies 2015, 3 20
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.