Flexible structures outperform rigid ones thanks to their lightweight, dexterous maneuverability as well as their suitability towards high vibration. To this end, a rectangular-shaped wing is modeled as a flexible cantilever beam under two loading conditions, namely the former is a uniformly distributed force which is triggered by gravity while the latter is a tip load. In the same context, this paper addresses the lumped parameter method (LPM) for modeling a flexible wing using SimMechanics (also called Simscape Multibody) and Simulink environment by considering the wing as a concatenation of small elements connected together through springs and dampers. To verify the proposed model, simulation examples are carried, from which it is found that the simulation results approximately match the analytical findings. To emphasis, comparatively speaking, the obtained results from SimMechanics model provides with the same results as in modal analysis which is performed through Ansys workbench, namely the achieved deflection as well as modes shape from the conventional formulas fit in with the deflection obtained from the developed model in SimMechanics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.