BackgroundPowered exoskeletons provide a way to stand and walk for people with severe spinal cord injury. Here, we used the ReWalk exoskeleton to determine the training dosage required for walking proficiency, the sensory and motor changes in the nervous system with training, and the functionality of the device in a home-like environment.MethodsParticipants with chronic (> 1 yr) motor complete or incomplete spinal cord injury, who were primarily wheelchair users, were trained to walk in the ReWalk for 12 weeks. Measures were taken before, during, immediately after, and 2–3 months after training. Measures included walking progression, sitting balance, skin sensation, spasticity, and strength of the corticospinal tracts.ResultsTwelve participants were enrolled with 10 completing training. Training progression and walking ability: The progression in training indicated about 45 sessions to reach 80% of final performance in training. By the end of training, participants walked at speeds of 0.28–0.60 m/s, and distances of 0.74–1.97 km in 1 h. The effort of walking was about 3.3 times that for manual wheelchair propulsion. One non-walker with an incomplete injury became a walker without the ReWalk after training. Sensory and motor measures: Sitting balance was improved in some, as seen from the limits of stability and sway speed. Neuropathic pain showed no long term changes. Change in spasticity was mixed with suggestion of differences between those with high versus low spasticity prior to training. The strength of motor pathways from the brain to back extensor muscles remained unchanged. Adverse events: Minor adverse events were encountered by the participants and trainer (skin abrasions, non-injurious falls). Field testing: The majority of participants could walk on uneven surfaces outdoors. Some limitations were encountered in home-like environments.ConclusionFor individuals with severe SCI, walking proficiency in the ReWalk requires about 45 sessions of training. The training was accompanied by functional improvements in some, especially in people with incomplete injuries.Trial registrationNCT02322125 Registered 22 December 2014.Electronic supplementary materialThe online version of this article (10.1186/s12984-019-0585-x) contains supplementary material, which is available to authorized users.
The neural plasticity of spinal reflexes after two contrasting forms of walking training was determined in individuals with chronic, motor-incomplete spinal cord injury (SCI). Endurance Training involved treadmill walking for as long as possible, and Precision Training involved walking precisely over obstacles and onto targets overground. Twenty participants started either Endurance or Precision Training for 2 months and then crossed over after a 2-month rest period to the other form of training for 2 months. Measures were taken before and after each phase of training and rest. The cutaneomuscular reflex (CMR) during walking was evoked in the soleus (SOL) and tibialis anterior muscles by stimulating the posterior tibial nerve at the ankle. Clonus was estimated from the EMG power in the SOL during unperturbed walking. The inhibitory component of the SOL CMR was enhanced after Endurance but not Precision Training. Clonus did not change after either form of training. Participants with lower reflex excitability tended to be better walkers (i.e., faster walking speeds) prior to training, and the reduction in clonus was significantly correlated with the improvement in walking speed and distance. Thus, reflex excitability responded in a training-specific way, with the reduction in reflex excitability related to improvements in walking function. Trial registration number is NCT01765153.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.