Since creation of spatial data is a costly and time consuming process, researchers, in this domain, in most of the cases rely on open source spatial attributes for their specific purpose. Likewise, the present research aims at mapping landslide susceptibility at the metropolitan area of Chittagong district of Bangladesh utilizing obtainable open source spatial data from various web portals. In this regard, we targeted a study region where rainfall induced landslides reportedly causes causalities as well as property damage each year. In this study, however, we employed multi-criteria evaluation (MCE) technique i.e., heuristic, a knowledge driven approach based on expert opinions from various discipline for landslide susceptibility mapping combining nine causative factors-geomorphology, geology, land use/land cover (LULC), slope, aspect, plan curvature, drainage distance, relative relief and vegetation in geographic information system (GIS) environment. The final susceptibility map was devised into five hazard classes viz., very low, low, moderate, high, and very high, representing 22 km 2 (13%), 90 km 2 (53%); 24 km 2 (15%); 22 km 2 (13%) and 10 km 2 (6%) areas respectively. This particular study might be beneficial to the local authorities and other stake-holders, concerned in disaster risk reduction and mitigation activities. Moreover this study can also be advantageous for risk sensitive land use planning in the study area.
Liquefaction can intensify the destruction caused by an earthquake; thus, a region with high liquefaction potential could be more disastrous. Bangladesh is surrounded by the Indo-Burma Folded Belt in the east, the Dauki Fault and Himalayan Syntaxis in the north that are known to have occurred high magnitude earthquakes (e.g., M w > 7) in the past. Therefore, assessing seismic hazards in the regions that are economically growing fast is of great interest. Among many other hazard assessment parameters, soil liquefaction potential index (LPI) can be used to assess seismic hazards. In this study, we have assessed the seismic hazard potential for a small town (Moulvibazar) in the northeast Bangladesh documenting liquefaction potential indices for different surface geological units using an earthquake of moment magnitude M w 8 having a peak horizontal ground acceleration (PGA) of 0.36 g. Twenty-five standard penetration test (SPT) boreholes were completed within the study area to obtain SPT-N values for two surface geological units: (1) Holo-Pleistocene low elevated terrace deposits (Zone 1) and (2) Holocene flood plain deposits (Zone 2). Using the SPT-N values, the LPI values have been calculated for the soil profile of each borehole. The LPI values in the town vary from 0 to 42.33, whereas values from 1.42 to 7.52 are in Zone 1 and values from 0 to 42.34 are in Zone 2. It has been predicted that 42% and 78% areas of Zone 1 and Zone 2, respectively, might exhibit surface manifestation of liquefaction. The results of this study can be used for seismic risk management of Moulvibazar town.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.