A $(2,1)$-total labelling of a simple graph $G$ is a function $\pi \colon V(G)\cup E(G) \to \{0, \ldots, k\}$ such that: $\pi(u) \neq \pi(v)$ for $uv \in E(G)$; $\pi(uv) \neq \pi(vw)$ for $uv, vw \in E(G)$; and $|\pi(uv)-\pi(u)| \geq 2$ and $|\pi(uv)-\pi(v)| \geq 2$ for $uv \in E(G)$. The $(2,1)$-total number $\lambda_2^t(G)$ of $G$ is the least $k$ for which $G$ admits such a labelling. In 2008, Havet and Yu conjectured that $\lambda_2^t(G)\leq 5$ for every connected graph $G \not\cong K_4$ with $\Delta(G) \leq 3$. We prove that, for near-ladder graphs, $\lambda_2^t(G)=5$, verifying Havet and Yu's Conjecture for this class.
A graceful labelling of a tree T is an injective function f: V (T) → {0, 1, . . . , |E(T)|} such that {|f(u)−f(v)|: uv ∈ E(T)} = {1, 2, . . . , |E(T)|}. A tree T is said to be 0-rotatable if, for any v ∈ V (T), there exists a graceful labelling f of T such that f(v) = 0. In this work, it is proved that the follow- ing families of caterpillars are 0-rotatable: caterpillars with perfect matching; caterpillars obtained by identifying a central vertex of a path Pn with a vertex of K2; caterpillars obtained by identifying one leaf of the star K1,s−1 to a leaf of Pn, with n ≥ 4 and s ≥ ⌈n−1 2 ⌉; caterpillars with diameter five or six; and some families of caterpillars with diameter at least seven. This result reinforces the conjecture that all caterpillars with diameter at least five are 0-rotatable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.