Pull‐apart basins or rhomb grabens and horsts along major strike‐slip fault systems in the world are generally associated with horizontal slip along faults. A simple model suggests that the width of the rhombs is controlled by the initial fault geometry, whereas the length increases with increasing fault displacement. We have tested this model by analyzing the shapes of 70 well‐defined rhomb‐like pull‐apart basins and pressure ridges, ranging from tens of meters to tens of kilometers in length, associated with several major strike‐slip faults in the western United States, Israel, Turkey, Iran, Guatemala, Venezuela, and New Zealand. In conflict with the model, we find that the length to width ratio of these basins is a constant value of approximately 3; these basins become wider as they grow longer with increasing fault offset. Two possible mechanisms responsible for the increase in width are suggested: (1) coalescence of neighboring rhomb grabens as each graben increases its length and (2) formation of fault strands parallel to the existing ones when large displacements need to be accommodated. The processes of formation and growth of new fault strands promote interaction among the new faults and between the new and preexisting faults on a larger scale. Increased displacement causes the width of the fault zone to increase resulting in wider pull‐apart basins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.