We have demonstrated slow propagation of surface plasmons on metallic Moiré surfaces. The phase shift at the node of the Moiré surface localizes the propagating surface plasmons and adjacent nodes form weakly coupled plasmonic cavities. Group velocities around v_{g}=0.44c at the center of the coupled cavity band and almost a zero group velocity at the band edges are observed. A tight binding model is used to understand the coupling behavior. Furthermore, the sinusoidally modified amplitude about the node suppresses the radiation losses and reveals a relatively high quality factor (Q=103).
The temperature dependence (15±293 K) of the six Raman-active mode frequencies and linewitdhs in gallium sul®de has been measured in the frequency range from 15 to 380 cm
21. We observed softening and broadening of the optical phonon lines with increasing temperature. Comparison between the experimental data and theories of the shift and broadening of the interlayer and intralayer phonon lines during the heating of the crystal showed that the experimental dependencies can be explained by the contributions from thermal expansion and lattice anharmonicity. The pure-temperature contribution (phonon± phonon coupling) is due to three-and four-phonon processes. q
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.