Secreted phospholipases A2 (sPLA2s) have been reported to play an important role in various inflammatory conditions and thus represent an attractive therapeutic target. Previous SAR studies from our laboratory have revealed certain important features of our recently discovered specific hGIIA sPLA2 inhibitors, and we report here the synthesis and biological activities of glycerol-containing derivatives of our lead compound III (Figure 1). Efficient and selective synthesis methods have been developed to make glycerol trisubstituted by different groups on desired positions. In terms of biological activities, the best compounds (A3, A6, and A15) are more active than III (Figure 1), as potent as Me-Indoxam, an sPLA2s inhibitor of reference, against hGIIA, hGV, and hGX sPLA2s and at least 10 times less active toward the GIB enzymes in two in vitro assay systems. By synthesis of enantiopure (S)-A6, we demonstrated that no important improvement of the inhibitory potency could be achieved by this approach. Furthermore, the results show that the global lipophilicity is likely responsible for the anti-PLA2 activity and two oxadiazolone moieties seem too big to be accommodated by the active site of the hGIIA enzyme.
a b s t r a c tThe group IIA human non-pancreatic secretory phospholipase A 2 (hnp-sPLA 2 ) is one of the enzymes implied in the inflammatory process. In the course of our work on inhibitors of this enzyme we investigated the influence of rigidity of the piperazine region on the biological activity. Several modifications were explored. Various linkers, such as amide, urea, carbamate, or alkoxyphenyl were inserted between the piperazine and the lipophilic chain. Also, modification of the piperazine core to incorporate carbonyl groups was studied. In an in vitro fluorimetric assay using the human GIIA (HPLA 2 ) and porcine pancreatic GIB enzymes, compound 60a (Y = phenoxy, R = C 18 H 37 , Z = CH 2 ) had the optimal activity with an IC 50 = 30 nM on HPLA 2 . By means of molecular modelling we attempted to get informations towards comprehension of differences in activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.