This paper describes a non-invasive, automatic, and robust method for calibrating a scalable RGB-D sensor network based on retroreflective ArUco markers and the iterative closest point (ICP) scheme. We demonstrate the system by calibrating a sensor network comprised of six sensor nodes positioned in a relatively large industrial robot cell with an approximate size of 10 m × 10 m × 4 m. Here, the automatic calibration achieved an average Euclidean error of 3 cm at distances up to 9.45 m. To achieve robustness, we apply several innovative techniques: Firstly, we mitigate the ambiguity problem that occurs when detecting a marker at long range or low resolution by comparing the camera projection with depth data. Secondly, we use retroreflective fiducial markers in the RGB-D calibration for improved accuracy and detectability. Finally, the repeating ICP refinement uses an exact region of interest such that we employ the precise depth measurements of the retroreflective surfaces only. The complete calibration software and a recorded dataset are publically available and open source.
This paper presents a scalable embedded solution for processing and transferring 3D point cloud data. Sensors based on the time-of-flight principle generate data which are processed on a local embedded computer and compressed using an octree-based scheme. The compressed data is transferred to a central node where the individual point clouds from several nodes are decompressed and filtered based on a novel method for generating intensity values for sensors which do not natively produce such a value. The paper presents experimental results from a relatively large industrial robot cell with an approximate size of 10 m × 10 m × 4 m. The main advantage of processing point cloud data locally on the nodes is scalability. The proposed solution could, with a dedicated Gigabit Ethernet local network, be scaled up to approximately 440 sensor nodes, only limited by the processing power of the central node that is receiving the compressed data from the local nodes. A compression ratio of 40.5 was obtained when compressing a point cloud stream from a single Microsoft Kinect V2 sensor using an octree resolution of 4 cm.
This paper describes the first simulations and experimental results of a novel segmented Light Detection And Ranging (LiDAR) reflector. Large portions of the rotating LiDAR data are typically discarded due to occlusion or a misplaced field of view (FOV). The proposed reflector solves this problem by reflecting the entire FOV of the rotating LiDAR towards a target. Optical simulation results, using Zemax OpticStudio, suggest that adding a reflector reduces the range of the embedded LiDAR with only 3.9 %. Furthermore, pattern simulation results show that a radially reshaped FOV can be configured to maximize point cloud density, maximize coverage, or a combination. Here, the maximum density is defined by the number of mirror segments in the reflector. Finally, a prototype was used for validation. Intensity, Euclidean error, and sample standard deviation were evaluated and, except for reduced-intensity values, no significant reduction in the LiDAR’s performance was found. Conversely, the number of usable measurements increased drastically. The mirrors of the reflector give the LiDAR multiple viewpoints to the target. Ultimately, it is argued that this can enhance the object revisit rate, instantaneous resolution, object classification range, and robustness against occlusion and adverse weather conditions. Consequently, the reflector design enables long-range rotating LiDARs to achieve the robust super-resolution needed for autonomous driving at highway speeds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.