In the period of 2008–2009, the efficacies of the benzimidazole (BZ) albendazole and the macrocyclic lactone (ML) ivermectin against gastrointestinal nematodes (GIN) of small ruminants were evaluated by means of the fecal egg count reduction (FECR) test and by post-treatment identification of surviving third stage (L3) larvae after coproculture. Sheep (n = 28) and goat (n = 28) flocks from three areas of Norway were randomly selected to assess the prevalence of anthelmintic resistance (AR), whereas only lambs from non-randomly selected sheep flocks (n = 32) with a farm management that could select for AR were investigated the second year. Only flocks with a mean excretion of nematode eggs per gram feces (EPG) ≥150 at time of treatment were included in the survey. In total, 48 (80%) and 13 (46.4%) of the selected sheep and goat flocks, respectively, fulfilled the inclusion criteria. The proportions of flocks classified as resistant (i.e., FECR <95% and with a lower 95% confidence interval of <90%) for the BZ drug albendazole were 10.5% and 31.0% in the randomly and non-randomly selected sheep flocks, respectively. When restricting the area to Rogaland County, eight flocks out of ten (80%) non-randomly selected sheep flocks showed BZ resistance. The efficacy of ML was 100% in all surveyed sheep and goat flocks. In post-treatment coprocultures from the non-randomly selected flocks, the main nematode genera were Teladorsagia/Trichostrongylus in five flocks, Haemonchus in two flocks, and a mixture of these genera in the remaining two flocks. In the goat flocks, the pre-treatment infection levels of GIN were low compared to what was found in the sheep flocks. Still, in one flock, AR against BZ in Teladorsagia/Trichostrongylus was found. New strategies and recommendations to face the emerging AR situation in Rogaland County in order to limit the spread of resistant nematodes within and into other areas are urgently needed.
BackgroundAnthelmintic treatment is the most common way of controlling nematode infections in ruminants. However, several countries have reported anthelmintic resistance (AR), representing a limitation for sustainable small ruminant production. The knowledge regarding worm control management represents a baseline to develop a guideline for preventing AR. The aim of the present study was therefore to improve our knowledge about the worm control practices in small ruminant flocks in Norway.MethodsA questionnaire survey regarding worm control practices was performed in small ruminant flocks in Norway. Flocks were selected from the three main areas of small ruminant farming, i.e. the coastal, inland and northern areas. A total of 825 questionnaires, comprising 587 sheep flocks (return rate of 51.3%) and 238 goat flocks (52.6%) were included.ResultsThe results indicated that visual appraisal of individual weight was the most common means of estimating the anthelmintic dose used in sheep (78.6%) and goat (85.1%) flocks. The mean yearly drenching rate in lambs and ewes were 2.5 ± 1.7 and 1.9 ± 1.1, respectively, whereas it was 1.0 (once a year) in goats. However, these figures were higher in sheep in the coastal area with a rate of 3.4 and 2.2 in lambs and ewes, respectively. Benzimidazoles were the predominant anthelmintic class used in sheep flocks (64.9% in 2007), whereas benzimidazoles and macrocyclic lactones were both equally used in dairy goat flocks. In the period of 2005-2007, 46.3% of the sheep flocks never changed the anthelmintic class. The dose and move strategy was practiced in 33.2% of the sheep flocks.ConclusionsThe present study showed that inaccurate weight calculation gives a risk of under-dosing in over 90% of the sheep and goat flocks in Norway. Taken together with a high treatment frequency in lambs, a lack of anthelmintic class rotation and the common use of a dose-and-move strategy, a real danger for development of anthelmintic resistance (AR) seems to exist in Norwegian sheep and goat flocks. This risk seems particularly high in coastal areas where high treatment frequencies in lambs were recorded.
BackgroundResistance against benzimidazoles (BZ) has recently been detected in Norwegian sheep flocks through a large scale prevalence survey based on the faecal egg count reduction test (FECRT). The use of this test in combination with bulk larval culture only gives an indication of which gastrointestinal nematodes genera that are involved and these results have to be confirmed by a controlled efficacy test (CET) to get accurate information about resistant nematodes populations at species level. A CET was therefore performed with larvae from two flocks where BZ resistance was previously detected through FECRT.ResultsThe latter test confirmed the previous results in both flocks. In flock A, the BZ resistant nematode population consisted solely of Haemonchus contortus, whereas H. contortus and Teladorsagia circumcincta comprised the resistant worm population in flock B.ConclusionsSome discrepancies that have been recorded between FECRT and CET results regarding time for post-treatment coproscopical examination and a temporary suppression of faecal egg excretion are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.